Open heidsoft opened 3 years ago
https://docs.seldon.io/projects/seldon-core/en/v1.1.0/index.html https://www.kubeflow.org/docs/components/serving/bentoml/ https://www.kubeflow.org/docs/about/kubeflow/ https://docs.bentoml.org/en/latest/frameworks.html#xgboost https://opendatahub.io/docs/kubeflow/installation.html https://www.kubeflow.org/docs/about/kubeflow/
https://mlflow.org/docs/latest/tracking.html https://zhuanlan.zhihu.com/p/57639703 https://cloud.tencent.com/developer/article/1692441 https://prometheus.io/docs/concepts/data_model/#samples https://en.wikipedia.org/wiki/Time_series https://prometheus.io/docs/concepts/jobs_instances/ https://github.com/AICoE/prometheus-data-science https://github.com/AICoE https://github.com/AICoE/prometheus-data-science/blob/master/metadata_analysis/graph_metadata.py https://github.com/durandom/DataScience-on-Prometheus-Metrics#forcasting https://www.tensorflow.org/io/tutorials/prometheus https://next.redhat.com/2019/11/18/prometheus-anomaly-detection/ https://github.com/mlflow/mlflow/ https://thoth-station.ninja/ https://next.redhat.com/category/ai-machine-learning/ https://github.com/AICoE/prometheus-anomaly-detector https://mlflow.org/docs/latest/quickstart.html#installing-mlflow
https://machinelearningmastery.com/develop-first-xgboost-model-python-scikit-learn/ https://e.huawei.com/en/publications/global/ict_insights/201810161444/customers-on-digital-transformation/201810161635
https://zhuanlan.zhihu.com/p/90790966
https://www.logicmonitor.com/lm-difference
https://xgboost.readthedocs.io/en/latest/python/python_intro.html#python-data-interface
https://www.jianshu.com/p/31e20f00c26f?spm=5176.12282029.0.0.36241491UUhnZE
https://zhuanlan.zhihu.com/p/67832773
https://github.com/dmlc/xgboost/tree/master/demo/data
https://www.cnblogs.com/mantch/p/11164221.html
https://blog.csdn.net/u011630575/article/details/79418138
https://www.cnblogs.com/pinard/p/11114748.html XGBoost类库使用小结
https://www.ctolib.com/topics-124853.html
https://aihub.cloud.google.com/p/products%2F3e82a569-8cdb-40ea-b7db-4fd5edcc0c2a Python机器学习实战之手撕XGBoost
http://www.huaxiaozhuan.com/%E5%B7%A5%E5%85%B7/xgboost/chapters/xgboost_usage.html Xgboost使用
https://www.datacamp.com/community/tutorials/xgboost-in-python
数据格式 https://qastack.cn/stats/61328/libsvm-data-format
https://blog.csdn.net/yangshaojun1992/article/details/87861767
https://blog.csdn.net/kobesdu/article/details/8944851 生成libSVM的数据格式及使用方法总结
libsvm文件格式
libsvm数据格式 libsvm使用的训练数据和检验数据文件格式如下:
[label] [index1]:[value1] [index2]:[value2] …
[label] [index1]:[value1] [index2]:[value2] … label 目标值,就是说class(属于哪一类),就是你要分类的种类,通常是一些整数。
index 是有顺序的索引,通常是连续的整数。就是指特征编号,必须按照升序排列
value 就是特征值,用来train的数据,通常是一堆实数组成。
csv to libsvm https://zhuanlan.zhihu.com/p/96042647
训练 https://zhuanlan.zhihu.com/p/75133195 模型训练与可视化
https://blog.csdn.net/u011630575/article/details/79418138