Closed magicffourier closed 4 years ago
You can first train the PCB baseline on P-DukeMTMC-reID with the script:
python scripts/main.py --root PATH_TO_DATAROOT \
-s p_duke -t p_duke\
--save-dir PATH_TO_EXPERIMENT_FOLDER/pduke_PCB\
-a pcb_p6 --gpu-devices 0 --fixbase-epoch 0\
--open-layers classifier fc\
--new-layers classifier em\
--transforms random_flip\
--optim sgd --lr 0.02\
--stepsize 25 50\
--staged-lr --height 384 --width 192\
--batch-size 32 --base-lr-mult 0.5
and then Extract the Pose imformation with the similiar method as in openpose_market.sh; Then train the PVPM with:
python scripts/main.py --load-pose --root PATH_TO_DATAROOT
-s p_duke\
-t p_duke\
--save-dir PATH_TO_EXPERIMENT_FOLDER/PVPM\
-a pose_p6s --gpu-devices 0\
--fixbase-epoch 30\
--open-layers pose_subnet\
--new-layers pose_subnet\
--transforms random_flip\
--optim sgd --lr 0.02\
--stepsize 15 25 --staged-lr\
--height 384 --width 128\
--batch-size 32\
--start-eval 20\
--eval-freq 10\
--load-weights PATH_TO_EXPERIMENT_FOLDER/pduke_PCB/model.pth.tar-60\
--train-sampler RandomIdentitySampler\
--reg-matching-score-epoch 0\
--graph-matching
--max-epoch 30
--part-score
How can I train the network to get the same performance like your paper reported. I'm a little confused, need you sincerely help.