Getting Error: RuntimeError: Calculated padded input size per channel: (3 x 3). Kernel size: (4 x 4). Kernel size can't be greater than actual input size
`import gym
import gym_minigrid
from stable_baselines3.common.env_checker import check_env
from stable_baselines3 import PPO, A2C
from stable_baselines3 import DQN
Getting Error: RuntimeError: Calculated padded input size per channel: (3 x 3). Kernel size: (4 x 4). Kernel size can't be greater than actual input size
`import gym import gym_minigrid from stable_baselines3.common.env_checker import check_env from stable_baselines3 import PPO, A2C from stable_baselines3 import DQN
env = gym.make('MiniGrid-Empty-16x16-v0') check_env(env, warn=True) env = make_vec_env(lambda: env, n_envs=1) model = DQN("MultiInputPolicy", env) `
Slight modifications from the original minigrid.py: changed the observation to only the image. tldr; obs = dict('image': array(16,16,3))
I am not quite sure how I should fix this if it's the layer of NN within the baseline model? Thanks