hizhangp / yolo_tensorflow

Tensorflow implementation of YOLO, including training and test phase.
MIT License
799 stars 442 forks source link

how to generate YOLO_small.ckpt file by runing train.py? #74

Open zimurui opened 6 years ago

cenwfohdkue commented 6 years ago

it won't generator .ckpt file in new tensorflow version. just load the .meta and .date.

Youpretty commented 5 years ago

it won't generator .ckpt file in new tensorflow version. just load the .meta and .date. @hainingbaby hi, hainingbaby. I trained the model with my own dataset, and generated 3 files named "yolo-10.data-00000-of-00001", "yolo-10.index" and 'yolo-10.meta'. How can i load the .meta and .data file? The code below can only open one weight file. Please help, tank you! parser.add_argument('--weights', default="yolo-10.data-00000-of-00001", type=str)

supermanhuyu commented 5 years ago

@Youpretty
you can test it by "python test.py --weight_dir pascal_voc/output/your_outputdir --weights yolo-10"

ZhouQianang commented 5 years ago

The new tensorflow generate three files(.meta; .index; .data-XXX-of-XXX) instead of .ckpt file. And you can use these files like before. Put them in weights: yolo.meta yolo.index yolo.data-0000-of-0001 Now run: python test.py --weights yolo

EmbugMaker commented 4 years ago

I'm new. I had this problem while running "train.py."Has anyone ever encountered this BUG? How to solve this problem? File "E:/CODEs/Nerual_Net_work_model/yolo_tensorflow-master/train.py", line 90, in train train_timer.remain(step, self.max_iter)) ValueError: Unknown format code 'f' for object of type 'str'

ZhouQianang commented 4 years ago

I'm new. I had this problem while running "train.py."Has anyone ever encountered this BUG? How to solve this problem? File "E:/CODEs/Nerual_Net_work_model/yolo_tensorflow-master/train.py", line 90, in train train_timer.remain(step, self.max_iter)) ValueError: Unknown format code 'f' for object of type 'str'

I changed the code<<

log_str = '''{} Epoch: {}, Step: {}, Learning rate: {},''' ''' Loss: {:5.3f}\nSpeed: {:.3f}s/iter,''' '''' Load: {:.3f}s/iter, Remain: {}'''.format( datetime.datetime.now().strftime('%m-%d %H:%M:%S'), self.data.epoch, int(step), round(self.learning_rate.eval(session=self.sess), 6), loss, train_timer.average_time, load_timer.average_time, train_timer.remain(step, self.max_iter))

to<<

log_str = '''{} Epoch: {}, Step: {}, Learning rate: {},Loss: {:5.3f}\n Speed: {:.3f}s/iter,Load: {:.3f}s/iter, Remain: {}'''.format( datetime.datetime.now().strftime('%m-%d %H:%M:%S'), self.data.epoch, int(step), round(self.learning_rate.eval(session=self.sess), 6), float(loss), float(train_timer.average_time), float(load_timer.average_time), train_timer.remain(step, self.max_iter))