Open keleeven opened 1 week ago
你用的外参Rcl和Pcl看起来不对,试试这个 Rcl: [ -0.999926, -0.00670802, 0.0101073, -0.0100912, -0.00242564, -0.999946, 0.00673218, -0.999975, 0.00235777] Pcl: [-0.0549762, 0.0675401, -0.0520599]
你用的外参Rcl和Pcl看起来不对,试试这个 Rcl: [ -0.999926, -0.00670802, 0.0101073, -0.0100912, -0.00242564, -0.999946, 0.00673218, -0.999975, 0.00235777] Pcl: [-0.0549762, 0.0675401, -0.0520599]
谢谢郑博的回复,试了您的参数配置后,就可以正常跟踪视觉点了,我跑的是exp10_cupola_2.bag这个数据集,但是每次在上楼梯这段狭窄空间的时候,位姿就会发生严重飘逸,并且单独跑LIO也会存在一样的问题,但是看作者的FAST-LIVO2论文实验部分,FAST-LIO2和FAST-LIVO都是很小的姿态误差,所以不太清楚是哪里存在问题,希望郑博可以指点一二,感激!!以下是我FAST-LIVO和FAT-LIO2的参数配置
FAST-LIVO: feature_extract_enable : 0 point_filter_num : 1 max_iteration : 10 debug: 1 dense_map_enable : 0 filter_size_surf : 0.05 filter_size_map : 0.1 cube_side_length : 20 grid_size : 40 patch_size : 8 img_enable : 1 lidar_enable : 1 outlier_threshold : 300 # 78 100 156 ncc_en: false ncc_thre: 0 img_point_cov : 100 # 1000 laser_point_cov : 0.001 # 0.001 delta_time: -0.05
common: lid_topic: "/hesai/pandar" imu_topic: "/alphasense/imu"
preprocess: lidar_type: 4 # 1:Livox Avia LiDAR 2:VELO16 3:OUST64 4:XT32 scan_line: 32 # 16 64 32 blind: 0.5 # blind x m disable
mapping: acc_cov_scale: 100 gyr_cov_scale: 10000 extrinsic_T: [-0.001, -0.00855, 0.055] extrinsic_R: [1.11022302e-16, -1.00000000e+00, 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, -0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -1.00000000e+00]
pcd_save: pcd_save_en: true
camera: img_topic: /alphasense/cam0/image_raw Rcl: [ -0.999926, -0.00670802, 0.0101073, -0.0100912, -0.00242564, -0.999946, 0.00673218, -0.999975, 0.00235777] Pcl: [-0.0549762, 0.0675401, -0.0520599]
FAST-LIO2: common: lid_topic: "/hesai/pandar" imu_topic: "/alphasense/imu" time_sync_en: false # ONLY turn on when external time synchronization is really not possible time_offset_lidar_to_imu: 0.0 # Time offset between lidar and IMU calibrated by other algorithms, e.g. LI-Init (can be found in README).
preprocess: lidar_type: 3 # 1 for Livox serials LiDAR, 2 for Velodyne LiDAR, 3 for ouster LiDAR, scan_line: 32 timestamp_unit: 3 # 0-second, 1-milisecond, 2-microsecond, 3-nanosecond. blind: 1
mapping: acc_cov: 0.1 gyr_cov: 0.1 b_acc_cov: 0.0001 b_gyr_cov: 0.0001 fov_degree: 360 det_range: 150.0 extrinsic_est_en: false # true: enable the online estimation of IMU-LiDAR extrinsic extrinsic_T: [-0.001, -0.00855, 0.055] extrinsic_R: [1.11022302e-16, -1.00000000e+00, 0.00000000e+00, -1.00000000e+00, 1.11022302e-16, -0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -1.00000000e+00]
publish: path_en: true scan_publish_en: true # false: close all the point cloud output dense_publish_en: false # false: low down the points number in a global-frame point clouds scan. scan_bodyframe_pub_en: true # true: output the point cloud scans in IMU-body-frame
pcd_save: pcd_save_en: true interval: -1 # how many LiDAR frames saved in each pcd file;
尝试了较多的方法,给激光点云建立噪声模型,加上BALM,修改IMU噪声,但无一例外,运行exp10_cupola_2.bag都在上楼梯这段发生了里程计的严重漂移,无论是FAST-LIO2,还是FAST-LIVO,希望郑博抽空可以指点迷津,感激不尽!!!
Exp10 Cupola 2这个数据不在Hilti2022的榜单上,livo2论文里只测了打榜需要的sequence。我下载下来看看。
我刚测了下exp10_cupola_2.bag,lio2我也跑不下来,但livo2可以跑下来。只是顶楼的地面稍微有点厚,但可以接受。livo2里面的LiDAR部分修改自voxel map,参数可以给你参考下。ps: 上下楼梯时很狭窄,voxel_size要设小一点,要不然平面会误判。
max_iterations: 10
voxel_map_en: true
pub_plane_en: false
dept_err: 0.001
beam_err: 0.01
min_eigen_value: 0.005
sigma_num: 3
voxel_size: 0.1
max_layer: 2
max_points_num: 150
layer_init_num: [5, 5, 5, 5, 5]
收到!!!谢谢郑博抽出时间调试,并感谢细节上的指点,我去尝试一下。
您好,最近在利用fast livo调试HILTTI-2022的数据集,激光里程计已经可以成功运行,但是结合相机这块一直调试有问题,无法正常跟踪特征点,以下是我配置的参数表,麻烦郑博可以点拨一二,感谢!!! feature_extract_enable : 0 point_filter_num : 1 max_iteration : 10 debug: 1 dense_map_enable : 1 filter_size_surf : 0.05 filter_size_map : 0.1 cube_side_length : 20 grid_size : 40 patch_size : 8 img_enable : 1 lidar_enable : 1 outlier_threshold : 300 # 78 100 156 ncc_en: true ncc_thre: 100 img_point_cov : 100 # 1000 laser_point_cov : 0.001 # 0.001 delta_time: 0.0
common: lid_topic: "/hesai/pandar" imu_topic: "/alphasense/imu"
preprocess: lidar_type: 4 # 1:Livox Avia LiDAR 2:VELO16 3:OUST64 4:XT32 scan_line: 32 # 16 64 32 blind: 1 # blind x m disable
mapping: acc_cov_scale: 100 gyr_cov_scale: 10000 extrinsic_T: [-0.001, -0.00855, 0.055] # horizon 0.05512, 0.02226, -0.0297 extrinsic_R: [ 0, -1, 0, -1, 0, 0, 0, 0, -1]
pcd_save: pcd_save_en: true
camera: img_topic: /alphasense/cam0/image_raw Rcl: [0,0,-1, 0,-1,0, -1,0,0] Pcl: [-0.052, -0.053, 0.068]