hku-mars / r3live

A Robust, Real-time, RGB-colored, LiDAR-Inertial-Visual tightly-coupled state Estimation and mapping package
GNU General Public License v2.0
2.03k stars 437 forks source link

rgb点云着色漂移 #172

Closed shanhaoran closed 1 year ago

shanhaoran commented 1 year ago

您好,感谢您杰出的贡献! 我测试的设备为ouster-64 和海康工业相机,在使用您提供的外参标定工具标定相机的外参后,发现点云的着色存在着比较明显的漂移。我的config配置为:

Lidar_front_end:
   lidar_type: 3   # 1 for Livox-avia, 3 for Ouster-OS1-64
   N_SCANS: 64
   using_raw_point: 1
   point_step: 1

r3live_common:
   if_dump_log: 0                   # If recording ESIKF update log. [default = 0]
   record_offline_map: 1            # If recording offline map. [default = 1]
   pub_pt_minimum_views: 3          # Publish points which have been render up to "pub_pt_minimum_views" time. [default = 3]
   minimum_pts_size: 0.01           # The minimum distance for every two points in Global map (unit in meter). [default = 0.01] 
   image_downsample_ratio: 1        # The downsample ratio of the input image. [default = 1]
   estimate_i2c_extrinsic: 1        # If enable estimate the extrinsic between camera and IMU. [default = 1] 
   estimate_intrinsic: 1            # If enable estimate the online intrinsic calibration of the camera lens. [default = 1] 
   maximum_vio_tracked_pts: 600     # The maximum points for tracking. [default = 600]
   append_global_map_point_step: 4  # The point step of append point to global map. [default = 4]

r3live_vio:
   image_width: 1440
   image_height: 1080
   camera_intrinsic:
      [1736.574835116879, 0.0, 889.1695567120595,
      0.0, 1720.3327171351075, 561.1026529195532,
      0.0, 0.0, 1.0 ] 
   camera_dist_coeffs: [-0.049495305220577865, -0.1303240762626971, 0.0011282394340686027, 0.020647162890014507, 0]   #k1, k2, p1, p2, k3
   # Fine extrinsic value. form camera-LiDAR calibration.
   camera_ext_R:
      [-0.0323055,-0.0422072,0.998586,
     -0.999462,0.00701493,-0.0320374,
     -0.00565281,-0.999084,-0.0424111]
   camera_ext_t: [-0.0307503,0.149225,-0.189062] 

r3live_lio:        
   lio_update_point_step: 4   # Point step used for LIO update.  
   max_iteration: 2           # Maximum times of LIO esikf.
   lidar_time_delay: 0        # The time-offset between LiDAR and IMU, provided by user. 
   filter_size_corner: 0.30   
   filter_size_surf: 0.30
   filter_size_surf_z: 0.30
   filter_size_map: 0.30 

11 在翻阅GitHub上其他人的问题和仔细阅读代码后发现,r3live中使用的是相机到IMU的坐标,因此我也对imu和相机进行了标定,但是使用imu到相机的外参后,r3live运行一段时间就会崩溃。具体报错为:OpenCV Error: Bad argument (The input arrays should be 2D or 3D point sets)。 请问您能给我一些意见吗?

shanhaoran commented 1 year ago

我还有一个问题,在mesh重建中如果不需要贴图的话,我是否可以不用图像生成稠密点云,直接使用fast-lio2生成的点云进行网格重建?

stale[bot] commented 1 year ago

This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions.

yahyahajlaoui commented 7 months ago

hello, did you solve this problem please ?