Closed hokiespurs closed 7 years ago
Generate a function "lsr.m" which which shares a similar syntax to nlinfit, but can perform:
function [beta,R,J,CovB,MSE,ErrorModelInfo] = lsr(X,Y,modelfun,beta0,options) % Inputs: % - X : Predictor variables % - Y : Response values % - modelfun : Model function handle @modelfun(beta,X) % - beta0 : Initial coefficient values % - options : Structure with optional parameters % % Outputs: % - beta : Estimated regression coefficients % - R : Residuals % - J : Jacobian % - CovB : Estimated Variance Covariance Matrix % - MSE : Mean Squared Error (Computed Reference Variance) % - ErrorModelInfo : Information about error model
finished draft of lsr, but its in general-purpoise-matlab
Generate a function "lsr.m" which which shares a similar syntax to nlinfit, but can perform:
LSR Function Format
Enhancements
Maintain Capabilities
Functions that will call it