Closed chowkamlee81 closed 6 years ago
The script you give is for training 50K iterations on training set (2975) only. The important augments here are subsets_for_training
, fine_tune_filename
and train_max_iter
.
train on extra+train (20000+2975 images),
If you want to use extra data, change to --subsets_for_training 'train,train_extra'
, train around 150K iterations.
then on train set (2975),
Then change to --subsets_for_training 'train'
and change --fine_tune_filename
to the file you obtained in the previous step, then continue training for 50K.
test on val set (500)
Then run the script like this CUDA_VISIBLE_DEVICES=0 python ./predict.py --database 'Cityscapes' --structure_in_paper 0 --save_prediction 0 --color_switch 0 --test_image_size 864 --mode 'val' --weights_ckpt './log/pspmg-only-resnet-1/model.ckpt-50000' --coloring 0 --mirror 1 --ms 1
. The python code train.py
concludes a test without multi-scale, which gives around 80.1. The predict.py
uses multi-scale test, which gives around 81.2.
Note that I used 8 (2x4) crops (864x864) in a mini-batch during training.
Now i understood the code for running model multiple times to land up good result... Very much thank of you... Closing the issue
As per author of Pspnet, we need to carry out
By running the below command 3 times, is it possible to get correct results? command below
CUDA_VISIBLE_DEVICES=0,1,2,3 python ./train.py --subsets_for_training 'train' --ema_decay 0.9 --gpu_num 4 --network 'pspnet' --structure_in_paper 0 --train_like_in_paper 0 --initializer 'he' --color_switch 0 --poly_lr 1 --data_type 32 --lrn_rate 0.01 --weight_decay_mode 1 --weight_decay_rate 0.0001 --weight_decay_rate2 0.0001 --batch_size 2 --train_max_iter 50000 --snapshot 25000 --momentum 0.9 --random_scale 1 --scale_min 0.5 --scale_max 2.0 --random_rotate 0 --database 'Cityscapes' --server $s --fine_tune_filename '../z_pretrained_weights/resnet_v1_101.ckpt' --train_image_size 864 --test_image_size 864 --optimizer 'mom' --data_type 32 --log_dir only-resnet
Kindly let me know without changing any code, whether we can get results of 80.2 mIOU. Kindly help if any other codes are there?