Open Duke-good opened 1 day ago
We generated action_dict.pkl
and prediction.pkl
by evaluating with other models. Take VideoPose3D as an example, we added a few lines to run.py.
At line 699, we collected the predicted_3d_pos
by
predicted_3d_pos = predicted_3d_pos.cpu().numpy().reshape(-1, inputs_3d.shape[-2], inputs_3d.shape[-1])
output_prediction.append(predicted_3d_pos)
After the evaluation is complete, we save output_prediction
and all_actions
, which is the evaluating order of subjects. At line 857, we added
run_evaluation(all_actions, action_filter)
import pickle
pickle.dump(output_prediction, open('prediction.pkl', 'wb'))
pickle.dump(all_actions, open('action_dict.pkl', 'wb'))
可以分享一下在STCformer中如何生成action_dict.pkl和prediction.pkl吗?谢谢大佬!
We add a few lines in run_stc.py
We used a dictionary to save the results:
output_dict = {'S9': {}, 'S11': {}}
Since they did not provide the model with refine net, we just collect output_3D_single
at line 69.
output_save = output_3D_single.clone().cpu().tolist()
for i in range(len(output_save)):
if action[i] not in output_dict[subject[i]]:
output_dict[subject[i]][action[i]] = []
output_dict[subject[i]][action[i]] += output_save[i]
Then after the for loop (at line 105), we converted the dictionary to our format. I'm sorry for the unorganized code. It works great for me.
import pickle
acts = ['Directions', 'Discussion', 'Eating', 'Greeting', 'Phoning', 'Photo', 'Posing', 'Purchases', 'Sitting', 'SittingDown', 'Smoking', 'Waiting', 'WalkDog', 'Walking', 'WalkTogether']
output_prediction = []
all_actions = {}
for act in acts:
all_actions[act] = []
for sub in ['S9', 'S11']:
for a in output_dict[sub].keys():
if act == 'Sitting' and 'SittingDown' in a:
continue
if act in a:
all_actions[act].append((sub, a))
N = len(output_dict[sub][a])
segment = int(N/4)
for i in range(0, N, segment):
output_prediction.append(np.array(output_dict[sub][a][i:i+segment]))
pickle.dump(output_prediction, open('prediction.pkl', 'wb'))
pickle.dump(all_actions, open('action_dict.pkl', 'wb'))
请问自己的训练模型如何生成这个action_dict.pkl 有和prediction.pkl文件