hsahovic / poke-env

A python interface for training Reinforcement Learning bots to battle on pokemon showdown
https://poke-env.readthedocs.io/
MIT License
297 stars 103 forks source link

Update tensorflow requirement from <2.15 to <2.16 #447

Closed dependabot[bot] closed 12 months ago

dependabot[bot] commented 1 year ago

Updates the requirements on tensorflow to permit the latest version.

Release notes

Sourced from tensorflow's releases.

TensorFlow 2.15.0

Release 2.15.0

TensorFlow

Breaking Changes

  • tf.types.experimental.GenericFunction has been renamed to tf.types.experimental.PolymorphicFunction.

Major Features and Improvements

  • oneDNN CPU performance optimizations Windows x64 & x86.

    • Windows x64 & x86 packages:
      • oneDNN optimizations are enabled by default on X86 CPUs
    • To explicitly enable or disable oneDNN optimizations, set the environment variable TF_ENABLE_ONEDNN_OPTS to 1 (enable) or 0 (disable) before running TensorFlow. To fall back to default settings, unset the environment variable.
    • oneDNN optimizations can yield slightly different numerical results compared to when oneDNN optimizations are disabled due to floating-point round-off errors from different computation approaches and orders.
    • To verify if oneDNN optimizations are on, look for a message with "oneDNN custom operations are on" in the log. If the exact phrase is not there, it means they are off.
  • Making the tf.function type system fully available:

    • tf.types.experimental.TraceType now allows custom tf.function inputs to declare Tensor decomposition and type casting support.
    • Introducing tf.types.experimental.FunctionType as the comprehensive representation of the signature of tf.function callables. It can be accessed through the function_type property of tf.functions and ConcreteFunctions. See the tf.types.experimental.FunctionType documentation for more details.
  • Introducing tf.types.experimental.AtomicFunction as the fastest way to perform TF computations in Python.

    • Can be accessed through inference_fn property of ConcreteFunctions
    • Does not support gradients.
    • See tf.types.experimental.AtomicFunction documentation for how to call and use it.
  • tf.data:

    • Moved option warm_start from tf.data.experimental.OptimizationOptions to tf.data.Options.
  • tf.lite:

    • sub_op and mul_op support broadcasting up to 6 dimensions.

    • The tflite::SignatureRunner class, which provides support for named parameters and for multiple named computations within a single TF Lite model, is no longer considered experimental. Likewise for the following signature-related methods of tflite::Interpreter:

      • tflite::Interpreter::GetSignatureRunner
      • tflite::Interpreter::signature_keys
      • tflite::Interpreter::signature_inputs
      • tflite::Interpreter::signature_outputs
      • tflite::Interpreter::input_tensor_by_signature
      • tflite::Interpreter::output_tensor_by_signature
    • Similarly, the following signature runner functions in the TF Lite C API are no longer considered experimental:

... (truncated)

Changelog

Sourced from tensorflow's changelog.

Release 2.15.0

TensorFlow

Breaking Changes

  • tf.types.experimental.GenericFunction has been renamed to tf.types.experimental.PolymorphicFunction.

Known Caveats

Major Features and Improvements

  • oneDNN CPU performance optimizations Windows x64 & x86.

    • Windows x64 & x86 packages:
      • oneDNN optimizations are enabled by default on X86 CPUs
    • To explicitly enable or disable oneDNN optimizations, set the environment variable TF_ENABLE_ONEDNN_OPTS to 1 (enable) or 0 (disable) before running TensorFlow. To fall back to default settings, unset the environment variable.
    • oneDNN optimizations can yield slightly different numerical results compared to when oneDNN optimizations are disabled due to floating-point round-off errors from different computation approaches and orders.
    • To verify if oneDNN optimizations are on, look for a message with "oneDNN custom operations are on" in the log. If the exact phrase is not there, it means they are off.
  • Making the tf.function type system fully available:

    • tf.types.experimental.TraceType now allows custom tf.function inputs to declare Tensor decomposition and type casting support.
    • Introducing tf.types.experimental.FunctionType as the comprehensive representation of the signature of tf.function callables. It can be accessed through the function_type property of tf.functions and ConcreteFunctions. See the tf.types.experimental.FunctionType documentation for more details.
  • Introducing tf.types.experimental.AtomicFunction as the fastest way to perform TF computations in Python.

    • Can be accessed through inference_fn property of ConcreteFunctions
    • Does not support gradients.
    • See tf.types.experimental.AtomicFunction documentation for how to call and use it.
  • tf.data:

    • Moved option warm_start from tf.data.experimental.OptimizationOptions to tf.data.Options.
  • tf.lite:

    • sub_op and mul_op support broadcasting up to 6 dimensions.

    • The tflite::SignatureRunner class, which provides support for named parameters and for multiple named computations within a single TF Lite model, is no longer considered experimental. Likewise for the following signature-related methods of tflite::Interpreter:

      • tflite::Interpreter::GetSignatureRunner
      • tflite::Interpreter::signature_keys
      • tflite::Interpreter::signature_inputs
      • tflite::Interpreter::signature_outputs
      • tflite::Interpreter::input_tensor_by_signature
      • tflite::Interpreter::output_tensor_by_signature

... (truncated)

Commits
  • 6887368 Merge pull request #62369 from tensorflow/r2.15-ea45e14c926
  • 6f92629 Change jaxlib version to the next earliest version for MacOS + Linux CI builds.
  • 71b7f97 Merge pull request #62350 from rtg0795/r2.15
  • 486d1c0 Update requirements.in and lock files
  • d289c2d Merge pull request #62349 from tensorflow-jenkins/version-numbers-2.15.0-20998
  • 9d77d88 Update version numbers to 2.15.0
  • 9381e7c Merge pull request #62348 from tensorflow/rtg0795-patch-1
  • e554d29 Update setup.py with released version of Estimator and Keras
  • 2a4ec94 Merge pull request #62308 from tensorflow/r2.15-e44f8a08051
  • cca5fda Merge pull request #62307 from tensorflow/r2.15-a1fd78b23b1
  • Additional commits viewable in compare view


Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
codecov[bot] commented 1 year ago

Codecov Report

Merging #447 (95b1b8f) into master (22bb424) will not change coverage. The diff coverage is n/a.

Additional details and impacted files ```diff @@ Coverage Diff @@ ## master #447 +/- ## ======================================= Coverage 83.41% 83.41% ======================================= Files 39 39 Lines 3956 3956 ======================================= Hits 3300 3300 Misses 656 656 ```