httle / ARS-DETR

Apache License 2.0
48 stars 7 forks source link

环境配置失败,请问有复现出来的么 #10

Open emotionee opened 10 months ago

dwddw commented 10 months ago

试试 torch==1.11.0+cu113 mmcv-full==1.7.0 mmdet==2.28.2 mmengine==0.10.1 mmrotate==0.3.4

floatingstarZ commented 8 months ago

基本可以复现,结果和论文是一致的

lsjEric commented 5 months ago

基本可以复现,结果和论文是一致的 请问一下你复现的环境是什么

floatingstarZ commented 5 months ago

基本可以复现,结果和论文是一致的 请问一下你复现的环境是什么 2024-03-25 12:45:58,958 - mmrotate - INFO - Environment info:

sys.platform: linux Python: 3.8.17 | packaged by conda-forge | (default, Jun 16 2023, 07:06:00) [GCC 11.4.0] CUDA available: True GPU 0,1: GeForce RTX 2080 Ti CUDA_HOME: /usr/local/cuda NVCC: Cuda compilation tools, release 10.1, V10.1.24 GCC: gcc (Ubuntu 5.5.0-12ubuntu1~16.04) 5.5.0 20171010 PyTorch: 1.12.1+cu102 PyTorch compiling details: PyTorch built with:

  • GCC 7.3
  • C++ Version: 201402
  • Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
  • Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • LAPACK is enabled (usually provided by MKL)
  • NNPACK is enabled
  • CPU capability usage: AVX2
  • CUDA Runtime 10.2
  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70
  • CuDNN 7.6.5
  • Magma 2.5.2
  • Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=10.2, CUDNN_VERSION=7.6.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.12.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,

TorchVision: 0.13.1+cu102 OpenCV: 4.9.0 MMCV: 1.7.1 MMCV Compiler: GCC 5.5 MMCV CUDA Compiler: 10.1 MMRotate: 0.1.0+
不用严格要求一致,差不多就可以复现

lsjEric commented 5 months ago

基本可以复现,结果和论文是一致的 请问一下你复现的环境是什么 2024-03-25 12:45:58,958 - mmrotate - INFO - Environment info:

sys.platform: linux Python: 3.8.17 | packaged by conda-forge | (default, Jun 16 2023, 07:06:00) [GCC 11.4.0] CUDA available: True GPU 0,1: GeForce RTX 2080 Ti CUDA_HOME: /usr/local/cuda NVCC: Cuda compilation tools, release 10.1, V10.1.24 GCC: gcc (Ubuntu 5.5.0-12ubuntu1~16.04) 5.5.0 20171010 PyTorch: 1.12.1+cu102 PyTorch compiling details: PyTorch built with:

  • GCC 7.3
  • C++ Version: 201402
  • Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
  • Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • LAPACK is enabled (usually provided by MKL)
  • NNPACK is enabled
  • CPU capability usage: AVX2
  • CUDA Runtime 10.2
  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70
  • CuDNN 7.6.5
  • Magma 2.5.2
  • Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=10.2, CUDNN_VERSION=7.6.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.12.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,

TorchVision: 0.13.1+cu102 OpenCV: 4.9.0 MMCV: 1.7.1 MMCV Compiler: GCC 5.5 MMCV CUDA Compiler: 10.1 MMRotate: 0.1.0+ 不用严格要求一致,差不多就可以复现

当我安装了mmcv-full==1.7.1 mmrotate==0.1.0 运行时提示AssertionError: MMCV==1.7.1 is used but incompatible. Please install mmcv>=1.4.5, <=1.5.0.

floatingstarZ commented 5 months ago

mmrotate/init.py里的版本改一下就行

lsjEric commented 5 months ago

mmrotate/init.py里的版本改一下就行

非常感谢我已经装完了,请问您在训练时最高的mAP值达到了多少

floatingstarZ commented 5 months ago

DIOR-R:65.7,DOTA-v1.0(测试集):72.9

RSer-XDU commented 4 months ago

@floatingstarZ 我想请问一下您能展示一下在DIOR数据集上各个类别的检测结果吗?我跑出来的结果每个类别虚警都特别高。你如果没有遇到这个问题,可以展示一下您的config吗?感谢 微信图片_20240622103328

floatingstarZ commented 4 months ago

Dets多是因为没有选取Scores阈值进行检测框筛选,有大量的低置信度冗余框,但不太影响指标,可视化的时候直接去掉就行。我跑出来的DIOR各个类结果: image

lsjEric commented 4 months ago

DIOR-R:65.7,DOTA-v1.0(测试集):72.9 请问您在推理test数据集的时候有没有遇到全是错位的情况,我推理出来的图片几乎全是错位,验证集就是正常的,想要请教一下

lsj1111 commented 4 months ago

DIOR-R:65.7,DOTA-v1.0(测试集):72.9

@floatingstarZ 我按照论文的配置尝试了很多次都没达到72.9这个值,因为label没有真值能供我在训练时通过mAP值进行调参,所以我很想知道您的lr等参数是如何设置的,希望您能指导一下,非常感谢。

floatingstarZ commented 4 months ago

邮件联系吧:ziyuehuang@buaa.edu.cn