Open allandclive opened 1 month ago
could you please confirm if you wrote the username before clicking on "start training" button?
could you please confirm if you wrote the username before clicking on "start training" button?
I did, i checked my account and copy pasted it, still no Push to Hub.
I had the same issue before, you just need to pass your username and token as an ENV variable not directly in the yml file.
Like this:
module load miniconda
source activate autotrain
export HF_USERNAME=CR7 export HF_TOKEN=hf_CristianoisbetterthanMessicr7
autotrain --config CR7_140CLtrain.yml
hub: username: ${HF_USERNAME} token: ${HF_TOKEN}
Hope this will help.
Prerequisites
Backend
Colab
Interface Used
UI
CLI Command
No response
UI Screenshots & Parameters
Error Logs
Training is starting... Please wait! INFO | 2024-09-19 08:24:08 | autotrain.cli.autotrain:main:60 - Using AutoTrain configuration: config.yml INFO | 2024-09-19 08:24:08 | autotrain.parser:__post_init__:148 - Running task: lm_training INFO | 2024-09-19 08:24:08 | autotrain.parser:__post_init__:149 - Using backend: local WARNING | 2024-09-19 08:24:08 | autotrain.trainers.common:__init__:180 - Parameters supplied but not used: input, instruction, output INFO | 2024-09-19 08:24:08 | autotrain.parser:run:212 - {'model': 'Qwen/Qwen2.5-0.5B-Instruct', 'project_name': 'autotrain-97886-5s45p', 'data_path': 'saillab/alpaca_luganda_taco', 'train_split': 'train', 'valid_split': None, 'add_eos_token': True, 'block_size': 1024, 'model_max_length': 2048, 'padding': 'right', 'trainer': 'default', 'use_flash_attention_2': False, 'log': 'tensorboard', 'disable_gradient_checkpointing': False, 'logging_steps': -1, 'eval_strategy': 'epoch', 'save_total_limit': 1, 'auto_find_batch_size': False, 'mixed_precision': 'fp16', 'lr': 3e-05, 'epochs': 3, 'batch_size': 2, 'warmup_ratio': 0.1, 'gradient_accumulation': 4, 'optimizer': 'adamw_torch', 'scheduler': 'linear', 'weight_decay': 0.0, 'max_grad_norm': 1.0, 'seed': 42, 'chat_template': None, 'quantization': 'int4', 'target_modules': 'all-linear', 'merge_adapter': False, 'peft': True, 'lora_r': 16, 'lora_alpha': 32, 'lora_dropout': 0.05, 'model_ref': None, 'dpo_beta': 0.1, 'max_prompt_length': 128, 'max_completion_length': None, 'prompt_text_column': None, 'text_column': 'text', 'rejected_text_column': None, 'push_to_hub': True, 'username': None, 'token': None, 'unsloth': False} INFO | 2024-09-19 08:24:08 | autotrain.backends.local:create:8 - Starting local training... INFO | 2024-09-19 08:24:08 | autotrain.commands:launch_command:489 - ['accelerate', 'launch', '--num_machines', '1', '--num_processes', '1', '--mixed_precision', 'fp16', '-m', 'autotrain.trainers.clm', '--training_config', 'autotrain-97886-5s45p/training_params.json'] INFO | 2024-09-19 08:24:08 | autotrain.commands:launch_command:490 - {'model': 'Qwen/Qwen2.5-0.5B-Instruct', 'project_name': 'autotrain-97886-5s45p', 'data_path': 'saillab/alpaca_luganda_taco', 'train_split': 'train', 'valid_split': None, 'add_eos_token': True, 'block_size': 1024, 'model_max_length': 2048, 'padding': 'right', 'trainer': 'default', 'use_flash_attention_2': False, 'log': 'tensorboard', 'disable_gradient_checkpointing': False, 'logging_steps': -1, 'eval_strategy': 'epoch', 'save_total_limit': 1, 'auto_find_batch_size': False, 'mixed_precision': 'fp16', 'lr': 3e-05, 'epochs': 3, 'batch_size': 2, 'warmup_ratio': 0.1, 'gradient_accumulation': 4, 'optimizer': 'adamw_torch', 'scheduler': 'linear', 'weight_decay': 0.0, 'max_grad_norm': 1.0, 'seed': 42, 'chat_template': None, 'quantization': 'int4', 'target_modules': 'all-linear', 'merge_adapter': False, 'peft': True, 'lora_r': 16, 'lora_alpha': 32, 'lora_dropout': 0.05, 'model_ref': None, 'dpo_beta': 0.1, 'max_prompt_length': 128, 'max_completion_length': None, 'prompt_text_column': None, 'text_column': 'text', 'rejected_text_column': None, 'push_to_hub': True, 'username': None, 'token': None, 'unsloth': False} The following values were not passed to
accelerate launchand had defaults used instead:
--dynamo_backendwas set to a value of
'no'To avoid this warning pass in values for each of the problematic parameters or run
accelerate config`. INFO | 2024-09-19 08:24:20 | autotrain.trainers.clm.train_clm_default:train:26 - Starting default/generic CLM training...Downloading readme: 0%| | 0.00/542 [00:00<?, ?B/s] Downloading readme: 100%|ββββββββββ| 542/542 [00:00<00:00, 2.14MB/s]
Downloading data: 0%| | 0.00/91.6M [00:00<?, ?B/s] Downloading data: 11%|ββ | 10.5M/91.6M [00:00<00:03, 25.4MB/s] Downloading data: 46%|βββββ | 41.9M/91.6M [00:00<00:00, 92.6MB/s] Downloading data: 80%|ββββββββ | 73.4M/91.6M [00:00<00:00, 145MB/s] Downloading data: 100%|ββββββββββ| 91.6M/91.6M [00:00<00:00, 126MB/s]
Downloading data: 0%| | 0.00/22.6M [00:00<?, ?B/s] Downloading data: 46%|βββββ | 10.5M/22.6M [00:00<00:00, 27.7MB/s] Downloading data: 100%|ββββββββββ| 22.6M/22.6M [00:00<00:00, 49.7MB/s]
Generating train split: 0%| | 0/49601 [00:00<?, ? examples/s] Generating train split: 10%|β | 5000/49601 [00:00<00:01, 43799.89 examples/s] Generating train split: 24%|βββ | 12000/49601 [00:00<00:00, 54561.97 examples/s] Generating train split: 38%|ββββ | 19000/49601 [00:00<00:00, 58766.73 examples/s] Generating train split: 52%|ββββββ | 26000/49601 [00:00<00:00, 58497.63 examples/s] Generating train split: 65%|βββββββ | 32000/49601 [00:00<00:00, 56329.54 examples/s] Generating train split: 79%|ββββββββ | 39000/49601 [00:00<00:00, 56915.91 examples/s] Generating train split: 95%|ββββββββββ| 47000/49601 [00:00<00:00, 58023.71 examples/s] Generating train split: 100%|ββββββββββ| 49601/49601 [00:00<00:00, 56634.02 examples/s]
Generating test split: 0%| | 0/12401 [00:00<?, ? examples/s] Generating test split: 56%|ββββββ | 7000/12401 [00:00<00:00, 62401.97 examples/s] Generating test split: 100%|ββββββββββ| 12401/12401 [00:00<00:00, 61162.21 examples/s] INFO | 2024-09-19 08:24:29 | autotrain.trainers.clm.utils:process_input_data:398 - Train data: Dataset({ features: ['instruction', 'input', 'output', 'id', 'text'], num_rows: 49601 }) INFO | 2024-09-19 08:24:29 | autotrain.trainers.clm.utils:process_input_data:399 - Valid data: None INFO | 2024-09-19 08:24:36 | autotrain.trainers.clm.utils:configure_logging_steps:471 - configuring logging steps INFO | 2024-09-19 08:24:36 | autotrain.trainers.clm.utils:configure_logging_steps:484 - Logging steps: 25 INFO | 2024-09-19 08:24:36 | autotrain.trainers.clm.utils:configure_training_args:489 - configuring training args INFO | 2024-09-19 08:24:36 | autotrain.trainers.clm.utils:configure_block_size:552 - Using block size 1024 INFO | 2024-09-19 08:24:37 | autotrain.trainers.clm.utils:get_model:587 - Can use unsloth: False WARNING | 2024-09-19 08:24:37 | autotrain.trainers.clm.utils:get_model:629 - Unsloth not available, continuing without it... INFO | 2024-09-19 08:24:37 | autotrain.trainers.clm.utils:get_model:631 - loading model config... INFO | 2024-09-19 08:24:37 | autotrain.trainers.clm.utils:get_model:639 - loading model...
low_cpu_mem_usage
was None, now set to True since model is quantized. INFO | 2024-09-19 08:24:47 | autotrain.trainers.clm.utils:get_model:670 - model dtype: torch.float16 INFO | 2024-09-19 08:24:47 | autotrain.trainers.clm.utils:get_model:677 - preparing peft model...Running tokenizer on train dataset: 0%| | 0/49601 [00:00<?, ? examples/s] Running tokenizer on train dataset: 2%|β | 1000/49601 [00:01<01:11, 678.47 examples/s] Running tokenizer on train dataset: 4%|β | 2000/49601 [00:02<01:10, 674.32 examples/s]Token indices sequence length is longer than the specified maximum sequence length for this model (2066 > 2048). Running this sequence through the model will result in indexing errors
Running tokenizer on train dataset: 6%|β | 3000/49601 [00:04<01:08, 679.98 examples/s] Running tokenizer on train dataset: 8%|β | 4000/49601 [00:05<01:08, 670.47 examples/s] Running tokenizer on train dataset: 10%|β | 5000/49601 [00:07<01:06, 671.21 examples/s] Running tokenizer on train dataset: 12%|ββ | 6000/49601 [00:08<01:04, 675.32 examples/s] Running tokenizer on train dataset: 14%|ββ | 7000/49601 [00:11<01:14, 571.86 examples/s] Running tokenizer on train dataset: 16%|ββ | 8000/49601 [00:13<01:20, 519.66 examples/s] Running tokenizer on train dataset: 18%|ββ | 9000/49601 [00:14<01:12, 562.22 examples/s] Running tokenizer on train dataset: 20%|ββ | 10000/49601 [00:16<01:06, 596.60 examples/s] Running tokenizer on train dataset: 22%|βββ | 11000/49601 [00:17<01:01, 627.57 examples/s] Running tokenizer on train dataset: 24%|βββ | 12000/49601 [00:19<00:58, 638.66 examples/s] Running tokenizer on train dataset: 26%|βββ | 13000/49601 [00:20<00:56, 652.08 examples/s] Running tokenizer on train dataset: 28%|βββ | 14000/49601 [00:22<00:54, 656.88 examples/s] Running tokenizer on train dataset: 30%|βββ | 15000/49601 [00:24<00:55, 622.44 examples/s] Running tokenizer on train dataset: 32%|ββββ | 16000/49601 [00:26<01:02, 535.97 examples/s] Running tokenizer on train dataset: 34%|ββββ | 17000/49601 [00:29<01:08, 476.05 examples/s] Running tokenizer on train dataset: 36%|ββββ | 18000/49601 [00:31<01:09, 453.88 examples/s] Running tokenizer on train dataset: 38%|ββββ | 19000/49601 [00:33<01:01, 501.60 examples/s] Running tokenizer on train dataset: 40%|ββββ | 20000/49601 [00:34<00:54, 545.19 examples/s] Running tokenizer on train dataset: 42%|βββββ | 21000/49601 [00:36<00:49, 578.46 examples/s] Running tokenizer on train dataset: 44%|βββββ | 22000/49601 [00:37<00:45, 610.63 examples/s] Running tokenizer on train dataset: 46%|βββββ | 23000/49601 [00:39<00:46, 566.40 examples/s] Running tokenizer on train dataset: 48%|βββββ | 24000/49601 [00:42<00:50, 506.92 examples/s] Running tokenizer on train dataset: 50%|βββββ | 25000/49601 [00:43<00:46, 530.80 examples/s] Running tokenizer on train dataset: 52%|ββββββ | 26000/49601 [00:45<00:41, 570.34 examples/s] Running tokenizer on train dataset: 54%|ββββββ | 27000/49601 [00:46<00:37, 606.31 examples/s] Running tokenizer on train dataset: 56%|ββββββ | 28000/49601 [00:47<00:34, 630.86 examples/s] Running tokenizer on train dataset: 58%|ββββββ | 29000/49601 [00:49<00:31, 646.08 examples/s] Running tokenizer on train dataset: 60%|ββββββ | 30000/49601 [00:50<00:29, 660.68 examples/s] Running tokenizer on train dataset: 62%|βββββββ | 31000/49601 [00:52<00:27, 666.02 examples/s] Running tokenizer on train dataset: 65%|βββββββ | 32000/49601 [00:54<00:31, 562.84 examples/s] Running tokenizer on train dataset: 67%|βββββββ | 33000/49601 [00:56<00:31, 531.83 examples/s] Running tokenizer on train dataset: 69%|βββββββ | 34000/49601 [00:58<00:27, 576.40 examples/s] Running tokenizer on train dataset: 71%|βββββββ | 35000/49601 [00:59<00:24, 605.95 examples/s] Running tokenizer on train dataset: 73%|ββββββββ | 36000/49601 [01:01<00:21, 628.18 examples/s] Running tokenizer on train dataset: 75%|ββββββββ | 37000/49601 [01:02<00:19, 639.65 examples/s] Running tokenizer on train dataset: 77%|ββββββββ | 38000/49601 [01:04<00:17, 652.50 examples/s] Running tokenizer on train dataset: 79%|ββββββββ | 39000/49601 [01:05<00:16, 656.04 examples/s] Running tokenizer on train dataset: 81%|ββββββββ | 40000/49601 [01:07<00:15, 619.35 examples/s] Running tokenizer on train dataset: 83%|βββββββββ | 41000/49601 [01:09<00:15, 539.41 examples/s] Running tokenizer on train dataset: 85%|βββββββββ | 42000/49601 [01:11<00:13, 551.74 examples/s] Running tokenizer on train dataset: 87%|βββββββββ | 43000/49601 [01:13<00:11, 585.59 examples/s] Running tokenizer on train dataset: 89%|βββββββββ | 44000/49601 [01:14<00:09, 607.44 examples/s] Running tokenizer on train dataset: 91%|βββββββββ | 45000/49601 [01:16<00:07, 628.74 examples/s] Running tokenizer on train dataset: 93%|ββββββββββ| 46000/49601 [01:17<00:05, 627.98 examples/s] Running tokenizer on train dataset: 95%|ββββββββββ| 47000/49601 [01:19<00:03, 652.85 examples/s] Running tokenizer on train dataset: 97%|ββββββββββ| 48000/49601 [01:20<00:02, 665.27 examples/s] Running tokenizer on train dataset: 99%|ββββββββββ| 49000/49601 [01:22<00:01, 555.87 examples/s] Running tokenizer on train dataset: 100%|ββββββββββ| 49601/49601 [01:24<00:00, 515.23 examples/s] Running tokenizer on train dataset: 100%|ββββββββββ| 49601/49601 [01:24<00:00, 587.26 examples/s] /usr/local/lib/python3.10/dist-packages/multiprocess/popen_fork.py:66: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock. self.pid = os.fork()
Grouping texts in chunks of 1024 (num_proc=4): 0%| | 0/49601 [00:00<?, ? examples/s] Grouping texts in chunks of 1024 (num_proc=4): 2%|β | 1000/49601 [00:03<02:38, 307.36 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 4%|β | 2000/49601 [00:04<01:28, 535.62 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 6%|β | 3000/49601 [00:05<01:06, 700.60 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 8%|β | 4000/49601 [00:05<00:50, 898.33 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 10%|β | 5000/49601 [00:05<00:36, 1218.72 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 12%|ββ | 6000/49601 [00:06<00:37, 1171.51 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 14%|ββ | 7000/49601 [00:07<00:37, 1129.76 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 16%|ββ | 8000/49601 [00:08<00:34, 1208.21 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 20%|ββ | 10000/49601 [00:09<00:28, 1410.06 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 22%|βββ | 11000/49601 [00:11<00:33, 1142.05 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 24%|βββ | 12000/49601 [00:12<00:34, 1096.27 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 26%|βββ | 13000/49601 [00:12<00:27, 1335.73 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 28%|βββ | 14000/49601 [00:14<00:35, 1009.40 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 30%|βββ | 15000/49601 [00:16<00:44, 770.60 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 32%|ββββ | 16000/49601 [00:17<00:43, 778.61 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 34%|ββββ | 17000/49601 [00:17<00:32, 1017.95 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 36%|ββββ | 18000/49601 [00:18<00:32, 965.36 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 38%|ββββ | 19000/49601 [00:19<00:32, 942.34 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 40%|ββββ | 20000/49601 [00:20<00:29, 1002.28 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 42%|βββββ | 21000/49601 [00:20<00:21, 1350.86 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 44%|βββββ | 22000/49601 [00:21<00:17, 1539.08 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 46%|βββββ | 23000/49601 [00:22<00:22, 1202.49 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 48%|βββββ | 24000/49601 [00:23<00:22, 1143.92 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 50%|βββββ | 25000/49601 [00:23<00:16, 1462.46 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 52%|ββββββ | 26000/49601 [00:24<00:15, 1547.19 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 54%|ββββββ | 27000/49601 [00:25<00:17, 1326.29 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 56%|ββββββ | 28000/49601 [00:26<00:17, 1210.96 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 58%|ββββββ | 29000/49601 [00:26<00:14, 1394.93 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 60%|ββββββ | 30000/49601 [00:26<00:11, 1779.98 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 62%|βββββββ | 31000/49601 [00:28<00:13, 1354.60 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 65%|βββββββ | 32000/49601 [00:29<00:15, 1116.71 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 67%|βββββββ | 33000/49601 [00:30<00:14, 1159.54 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 69%|βββββββ | 34000/49601 [00:30<00:12, 1281.42 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 71%|βββββββ | 35000/49601 [00:32<00:15, 942.24 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 73%|ββββββββ | 36000/49601 [00:34<00:17, 775.98 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 75%|ββββββββ | 37000/49601 [00:35<00:14, 841.53 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 77%|ββββββββ | 38000/49601 [00:36<00:12, 924.74 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 79%|ββββββββ | 39000/49601 [00:37<00:13, 784.74 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 81%|ββββββββ | 40000/49601 [00:39<00:14, 649.23 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 85%|βββββββββ | 42000/49601 [00:40<00:07, 1057.07 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 87%|βββββββββ | 43000/49601 [00:41<00:05, 1110.89 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 89%|βββββββββ | 44000/49601 [00:42<00:05, 1041.72 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 91%|βββββββββ | 45000/49601 [00:42<00:03, 1202.49 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 93%|ββββββββββ| 46000/49601 [00:43<00:02, 1312.87 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 94%|ββββββββββ| 46401/49601 [00:43<00:02, 1399.39 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 96%|ββββββββββ| 47401/49601 [00:43<00:01, 1785.51 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 96%|ββββββββββ| 47801/49601 [00:44<00:01, 1305.52 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 97%|ββββββββββ| 48201/49601 [00:45<00:01, 1145.95 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 99%|ββββββββββ| 49201/49601 [00:45<00:00, 1182.31 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 100%|ββββββββββ| 49601/49601 [00:48<00:00, 484.62 examples/s] Grouping texts in chunks of 1024 (num_proc=4): 100%|ββββββββββ| 49601/49601 [00:52<00:00, 938.25 examples/s] INFO | 2024-09-19 08:27:06 | autotrain.trainers.clm.train_clm_default:train:87 - creating trainer ERROR | 2024-09-19 08:27:06 | autotrain.trainers.common:wrapper:120 - train has failed due to an exception: Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py", line 304, in hf_raise_for_status response.raise_for_status() File "/usr/local/lib/python3.10/dist-packages/requests/models.py", line 1021, in raise_for_status raise HTTPError(http_error_msg, response=self) requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/api/repos/create
The above exception was the direct cause of the following exception:
Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/autotrain/trainers/common.py", line 117, in wrapper return func(*args, *kwargs) File "/usr/local/lib/python3.10/dist-packages/autotrain/trainers/clm/main.py", line 23, in train train_default(config) File "/usr/local/lib/python3.10/dist-packages/autotrain/trainers/clm/train_clm_default.py", line 88, in train callbacks = utils.get_callbacks(config) File "/usr/local/lib/python3.10/dist-packages/autotrain/trainers/clm/utils.py", line 558, in get_callbacks callbacks = [UploadLogs(config=config), LossLoggingCallback(), TrainStartCallback()] File "/usr/local/lib/python3.10/dist-packages/autotrain/trainers/common.py", line 192, in init self.api.create_repo( File "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(args, **kwargs) File "/usr/local/lib/python3.10/dist-packages/huggingface_hub/hf_api.py", line 3256, in create_repo hf_raise_for_status(r) File "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py", line 367, in hf_raise_for_status raise HfHubHTTPError(message, response=response) from e huggingface_hub.utils._errors.HfHubHTTPError: (Request ID: Root=1-66ebe05a-40b4fae6096332c669829e2c;e21feeee-8f21-4912-93e8-677ca12f8b28)
403 Forbidden: You don't have the rights to create a model under the namespace "None". Cannot access content at: https://huggingface.co/api/repos/create. If you are trying to create or update content,make sure you have a token with the
write
role.ERROR | 2024-09-19 08:27:06 | autotrain.trainers.common:wrapper:121 - (Request ID: Root=1-66ebe05a-40b4fae6096332c669829e2c;e21feeee-8f21-4912-93e8-677ca12f8b28)
403 Forbidden: You don't have the rights to create a model under the namespace "None". Cannot access content at: https://huggingface.co/api/repos/create. If you are trying to create or update content,make sure you have a token with the
write
role. INFO | 2024-09-19 08:27:10 | autotrain.parser:run:217 - Job ID: 1411 Training completed successfully!`Additional Information
the Token key is "write",