huggingface / controlnet_aux

Apache License 2.0
400 stars 86 forks source link

Overload resolution failed #9

Open depyronick opened 1 year ago

depyronick commented 1 year ago

No matter what I've tried, openpose not working. Other control nets working but not pose.

<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=480x600 at 0x7F309E68BFA0>

Traceback (most recent call last):
  File "/opt/ckpt/handler.py", line 221, in <module>
    result = handler({
  File "/opt/ckpt/handler.py", line 165, in handler
    output = get_stable_diffusion_pipeline(
  File "/opt/ckpt/handler.py", line 85, in get_stable_diffusion_pipeline
    image = openpose(image)
  File "/opt/conda/lib/python3.10/site-packages/controlnet_aux/open_pose/__init__.py", line 51, in __call__
    candidate, subset = self.body_estimation(input_image)
  File "/opt/conda/lib/python3.10/site-packages/controlnet_aux/open_pose/body.py", line 52, in __call__
    heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
cv2.error: OpenCV(4.7.0) :-1: error: (-5:Bad argument) in function 'resize'
> Overload resolution failed:
>  - src data type = 23 is not supported
>  - Expected Ptr<cv::UMat> for argument 'src'

image

patrickvonplaten commented 1 year ago

Hey @depyronick,

Could you copy-paste a reproducible code snippet?

depyronick commented 1 year ago
def base64_to_pil(base64_image_data: str):
    return Image.open(BytesIO(base64.b64decode(base64_image_data)))

image = base64_to_pil('...base64stringhere')

pipeline = StableDiffusionControlNetPipeline.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.float16,
    local_files_only=True,
    controlnet=ControlNetModel.from_pretrained(
        "./controlnets/openpose", torch_dtype=torch.float16),
    safety_checker=None
).to('cuda')

pipeline.scheduler = UniPCMultistepScheduler.from_config(
    pipeline.scheduler.config)

pipeline.enable_xformers_memory_efficient_attention()
pipeline.enable_model_cpu_offload()

body_model = Body('./controlnets/net/annotator/ckpts/body_pose_model.pth')
openpose = OpenposeDetector(body_model)
image = openpose(image)

pipeline(
    prompt=prompt,
    height=height,
    width=width,
    generator=generator,
    negative_prompt=negative_prompt,
    num_images_per_prompt=num_images_per_prompt,
    num_inference_steps=num_inference_steps,
    guidance_scale=guidance_scale,
    image=image
)

Hey @depyronick,

Could you copy-paste a reproducible code snippet?

jinwonkim93 commented 1 year ago

Have you check your image? @depyronick

depyronick commented 1 year ago

Have you check your image? @depyronick

what do you mean by that?

jinwonkim93 commented 1 year ago

Have you check your image? @depyronick

what do you mean by that?

image = base64_to_pil('...base64stringhere')

can you check if this is valid image?

depyronick commented 1 year ago

Have you check your image? @depyronick

what do you mean by that?

image = base64_to_pil('...base64stringhere')

can you check if this is valid image?

Yes.

Base 64 Image `/9j/4AAQSkZJRgABAQAAAQABAAD/7QB8UGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAGAcAigAWkZCTUQyMzAwMDk2YTAxMDAwMDEwMTUwMDAwMmExZjAwMDBmMjI5MDAwMDZiNWEwMDAwNjA2ZDAwMDBmZjgzMDAwMDA1OWMwMDAwYjVhYzAwMDBmN2NkMDAwMAD/2wBDAAYEBQYFBAYGBQYHBwYIChAKCgkJChQODwwQFxQYGBcUFhYaHSUfGhsjHBYWICwgIyYnKSopGR8tMC0oMCUoKSj/2wBDAQcHBwoIChMKChMoGhYaKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCj/wgARCAJYAeADASIAAhEBAxEB/8QAHAAAAAcBAQAAAAAAAAAAAAAAAAECAwQFBgcI/8QAGwEAAwEBAQEBAAAAAAAAAAAAAAECAwQFBgf/2gAMAwEAAhADEAAAANKAP0D4MzAQAoJpCiKWEBDj8UKriwzUzm6dZJySOPsuIrbmmc+umLz0rrCAjXLUFmD597iA+bJWVsV74UTmis6nL3lzT8nUjM2DPbxx0yGd+chLTLiJv3M9c4LNOmVe7ZiLrUX72emXN1vr5SMARuNmqffhjO7RynlZaTZURGO1miuemssax6/lINYBIWEJJYBAcMGzWFSVGBmaVJuSIh52+5Hfm0BonMltxE02ps7lSo4alXmZcy13Oj5TZeZ6Vrk9PXdPNTpWnv8APIzDFm2c0pJgCMwkkzMErIwlMEqLaNQqEqMxuJSJalNmFi5VnlrVmZ93IQMIAAGAZgkKBKVAJAjMYBhWkGGAgQGZKBZtiaBKDSQsAhRhCTMAQMIIzMZBRoSFAYBqQknDBs3AmgKAEDMSQo0JNQGkLNNBuKVINZzVMah18qTMARKAEDNCQoAk1BNIWY0BYBJLCEBwAgOAaAs0INQBIUASFgGzcANmsISagCTMxkYNMjBoIKCCCgCTUY0Gs00Gs1SDUaaQoJgA0gYNOnNR9fOgLMEBwIQFgEhYBBrCEBZjQFgEBYBAWASaiAgoIIKNCDWQJCwCSdJNsOAEBYBIWASFhNClgEKUapJmaaQoDIAIABiI5FplrSOaeRzdOdlXR49FTLkJi+fGoe94CTUE0moAkKNCQoxoDgQgOKGybxyMB4AyJTyqvE4JwjlttMG6bTRuGhoSSVNJcAmws2Nh0gQFhNAWASZgCANMgAIA3AaXYWOHRTWE8c/SmUwWOzq4yU5y6qK3bVlfH6uSCax6HmpCwmg1mCAs00hRgk1BNKwFSQs0INQAzSE1hATWgzAgWDFvYXG+d57+sJPlZzDb1YfAu0aYziSNsVBsA6phacxhL8aRBYqCvO1XF1Ds6OClwEtWLlWgd0zUEKawyNczSsVCQoCJQMcRRncJCwmkKMCWH5sNPNRTRqGmZSY5zUttoRakkdS2TgqG1LcTZEqDNcl4RMg8vqkCPHqlW1AHO0m4Gxme19R80dR14+kJcL0fMSsghQSasEowQawhKgGyAAgAaRAzEgOrVRzM0GZsy5BwXJqugaKKOEu1LXOuOxMVQVwE69q1UKmetDVVzF04qr3KK5hnXTrGlTypJNRSfDUbivc/Ncac9SY5vaIAZMCZqZ0xOg1nRuTp4ts+6jTicEdv2/nXEvSgrUWgbrGrkJ1otFBi7e2kYa0rluNc6VVyE6oWoCoRdBVSyLICiOPkDbEsBGNJ75GEgSjQoZhS5aVgp0MNpcuJbJpRoCaiB3BBZoQa1JteYvUXn3PbkpGvk9powM6mdJw2/wCP0r7qnINd5vqdkq23p4KlTq/sfh2BICbCnQhBrA0gAAAkZkCAyMCSFBiQo0INQBJqAyCzVQFIVtg4ptUaOrYCp8R0g+ygqzACqRBRoSZgYMKQFEqWApSbfK+tVUX5L1+R3XjfZc1a63y7Tm6Ws43F60S7g9CnOJoOb9+hJMi+n+ECQmkaTS0ACEAAwGQTMJIFmgCWEgDUlYyJak0G4aaTcXN0yiV0c4MGqMwJDMlDNQVFkajVNIfJzHEhTUdT7kkdUg5plTxpt8Xv/Ms7O9OxGm5fbvuddF5lx93QrLme3jTWXOGxuG+u67wXsumW5SZfQfDpIyuUpUbGydMTJuGDZuGqbNxaEm4qLjm+BMm8abalmmhRmmZka0oTC+zgSHFq2VPKmmFuqmm1OnNIcIS3FNLm1hAGs2kg8TJuHcg95QVaS7tnq2x97l935Pv1/Les8f0hu8z7/Xy71UK28v1el0ujwuD7Bfch657fyqg6e+DIeNUybwTZJ8CZN0CbNYGQMDIGEAGYEFKTaU4BoN5c3QLSOziWtg5t4MhDgaJjwZWCgk0KUk01qQqbWpGHm9nyvjNNS0GeaUbd6pJB8/RkNFIrvP8AbsOZdajZbcLGvy/qeQ/pcddqNqmrYwe8s8pRdHndr3/i3Ub5euD550OGRGQJMksMJAlAjGAZgRkaZmhSpxbRzTobCpwIAs+bQ9Hy3AgwWEgpZtmhw0KVLUhc0pRKizMc8moPAWDejYCDUSoaVp2C5aeWWrz99c5dXLFdXg+f6vKE9Wh1ly6r6xU9PBiMv0HCbckmVVabTm5zMhSK36p0niXQuS+zO43ZNJJRaZkAGwCAGCAGCJNQSlpwIIHDbA3g0ApDI+/zwZGmYBoACkEs1Jk4FxQWS42Pyt6D8qhGUhb2S060rInVD6HuOG9+h2NhV2fRjINsRo1GmxrziV9nTScXepLPGmdhQpMs+7omFtCvsj1XPTrd9g7/AIN9WSkehxAiJowggWGw0skkCgkwUCMAYUrAUJdGZK9LzSURpmZCUFoUDppOdHFNnFuqbhTpw3lk+FSSbKp6FNrSClBTlj0FwDtEa66yrbjr5lqUcaNsS49RV0GiyMPktdf53DXTtvdTzz432CvtstcZJ6Tw7Hfp++xmt5ddE7Q3no8QQZb4EAQjBGBggNRoVOijSctZthN00GrpVNH6nkuG0BOhs1TimlKnDbVLdU0tUvE7TisXyFso0dK3oU2bQlw6lZmmsR0nmusnTtNxT2+6fUlyNENPsoq8ZucCpw+Q3WGxuf0Hn+tOax3uF1nF27Xzf6J88566DpXLOt1M7ZZ67uFkae/jAInKgkkLJIGoIMpakHLUptSbim1RXntbCfoPj5Yr1p2LlOkLtdQTV25n5SLd/NvtXPJLLOef7pRnkcvqxXmpM7JkpXpyqIHWZWNcFXpC4pLutZSwvLZqPIYZC550LncTT836Nz2JutRB2MRpIRvcHdWce0OI7M9b0jl+ufP2wZyl4uvXjnTX1fxvSVcwMOoFy9JXUxy+OjrS+SGn1xfGVTXZXOPAfZF8Uem5w0ch5ZEtS0llWNnMqefJ6Eqb5hoOhHhvzZjrGCueNUT7fP7TAUzn1FLhSBzFIPTiUtCqkMvtD9F6Gh0WfXJcCo2ix5MWlBwe+5TlFjktfKwUC7kS8dHpN0nm38v1S2PVwl7XI2Rz9T6NyDsnB08va29b9R8XmmdKjbnzB3yYdO1cpZXx7kh1RXKnNQu4htV5pmRUwpbVbJNxlDaiMT06qr2timhNVpeU7LlHN3Z2NJh8P0S0IC2FlWWE5y0GN+AzJTSJcbUrTtOgp7zm73krSVFiy4dKJyjquTzlhye5xupc10/O87yj0txFvh78d7083XWDrHa9651N87bXVG7qvQ8jPM6CB6/i0BaJNZ5t25bc5aFpjU5ctFHlVZWoRTN2wSnP0q7u5iwEy7J+iWLQvZyRVX4olMtPPvTOScXuobeb4vZbM0Y6qs6zR68rDbqOngSZhUOjc27Dlv0G8prvHtUlbY48KbBpQ+WdPxcRvJlEx5u+hZr9JJjuG+rPKnXhmmtbkO0eWwqjWXXOeh45dpqn4L4YLi5nvfNwYN5UBHs6+UKZFWttclpKuU9XyJuRJTHV5+tjtHJZpqpCd2zAnaKOHpQojtgCuaYaxrfL+pZbcbw9IgBhrb9FzOq9DwecoeQtUqSlVI7jy7qnL3au7zuhjodacQ1Fgza9zX4La8wUd6kYK28ze7FOhCvMfoLzl38/XeX7LPejwZcBzn9Of07k+nnm6ZqLfGvgsHc9J9v5+5jRmWWb8GAqsVw3003lW5Os9iFEc3p1FWJUeQ308hpZfQ06ogN9lTTlHa5nDo5pFlNeV9bHQ81n0pWnY5z02g23PPZ+SwwJPD7ikGkroWwzlzyd2102Z0WfQ6QDIdbY1bmjzlzz9ZdssKpfnb6VrPJgv/IfW+L+jz7G0yO19Hy+TqQrk9mRusDpL5fQkV1GXMzHCPd+bcYrnHDz8SwpVKNBEFClnWp3R5t8d7FppQOuvRNhSJkrPSoa3FCqppEmc863kPWeEcfqtsrb5PaQ2pOPQXZOXeleryYPNeycV7fLyCUjg9YJVbTr0F2rGW/UtDltbz9pgGVBqLaiIzmc0mFePUZyrTh1cmVFZm3PMnX+NejyP6zG7bs4+dutOY+m5r8hLrm9L0bEzmx58WsY935OmlWESh1xuLpMxgmYpCbGrlz5VElrRFQLD0BprFfzn3lccgTdPn7qL2cMbVVdrjt5z4bd03ZzttrbOhIK459O4bTeWXV5fM/OXtfxm1m0mTpG7wfccuuBC0rKN3awZPJ6EhJJqa6jt6RFTzDq3Nnj0J3RWPG6CXpq/O/NeZ0WV9jzj6pyj0Vc+c13FLl3vW9Nd1h3mdwTqXLmhGla+j+UzbloWmdeuxkzdEemhxdUzomGs5G1UXTLMlrFpehHsXJ+Y++ukQXUVdNq2urkg4frXnHN8PjSGeqWkmnn6h0nm3pKY6tdwYW2Gl8JezPGBEdLiN8VekOO9m5fQq7egveXrvJVZMZMQEaTS1cxiCNy7rXP6z1Fxj9RzZjm/WMFefHotlX+jiv1t5K79jeN5R6S82Vq9ZViqnuvVOHdt87Sxu5KNpm8p65TGfMNBotL0c/KXOj51GUqdvF6ePGJ2Cermx6bVnp5LmdcyuD6HOo0JS87ON1zE5F3jEZa+Yq3qtRxevzsaBDwnesolxtxhEuW0z4p9jeLiEASN46/oFVHB6VVt81ZY7aqbV2W0SYkysc1K0piq2l08e8+P+hvO3Us8LrjVlhdsYcebH6Gr0NwX1C8M75o75wS6U809j1dM7TyzpvnvY18ar9fg0EKtd0x0N1jJ3H37tOcXw9llWsq0i/XCsOfoyEPa5zXl56/Wova+KjXc6S75+7U6/jVlR4enHiuQ8O1fXOSdR6PN3kusT6Pi3Sah5N7x36V8yvNXQOdd1x6UNix5+p9VowORdVMrPS3pral0hhLwvOMTovPmG25Vu8I0XAOn8qvGM07q9bgepZaNMubefPXHEMe3mMro3R+H0eadeti6/Jn08l30/OjuQhed04yXJ2x73OvubKyiX/F3RBVw5d1Pwk3TPJiInxfctYTJjtq9mJSycdaejrTYP7qMORbTI64rRuxyOSYuEdTVcE65yD1PI0PXcL1Lj7+U9Cx9Zj09oj4jedfIl1TzHq2xhCaS8OnljpkppcOuZOcwncYPdJ5Ouy02I1kb9MjVEHv83Ncz2GM836K+7JyPsPD2W0d+g9PwrR3NF6flaA89LTslVqZdiuqU3ayaR6NLRqG5DeYSi456KNvxvc0b2HfqdbDZgTWat4zGnV1VTbu/l833PP4Ea9NPnV1hesOtcms7x7vlf28V9Or5vF25eo1FWqpJb9dorvpPFS1x7kjEo1y3DGLgXM2sjJ5uhuU3IJakJfVFfUehze2rq2i7eBPPeiZjk9iP1Tmtnx+j0VnMl6nz2jboWe/y9GihFxoX82Qacs4mL0ac2sejGVTN6lOTJFqzo874vtLg2zgZmq3T+kYFOwKlPsGX/S8vK5a8peXtS25cxoVdOnTVlWzoGVmQhNTYxllrFiW9XrNdAsK8G116ZrbvY/VS3G1p0yzmhUdwSyclv6yhm4aWeflVDUWk08We2qtW3VVxEjK14nhFcrNbKnEyQGwfUuMCnGgxwMKFJVFUGldZm46P10Ova0rOYvxXLmap2dAaNHp+VXUOmoObrEW/ew6aGZIcHm7Cue1ybzHReSzW7YdRnsRA4dTAuaLfOtoNJWUm7GbGzvYCM7AtKT0hd3S9NyrMaufd8OvDaXZZz0ueI2u7qa1UhlVFsq2cDb61IivRJAiWw4M1sIY+UZ0Uw4BhIXGeHYQo0cjpgwW9w1zsldiUVdPqRLz2oFzz2/2jjWfh3sEJ7NaA0EddDNWnO9vldJsCS6rZS6hB09s2qzOZ0VB0Y7yvms46vTI76DJpVzqthitjxbW1hW3XHfPOU9qzPpcuNi66u6M65oE09NpZ1Di5MWG7WRlssrCLQCnzoEO51NfWR5rRIgs0r2I0c1cjQaHDTmb/R8g1ItsnYw793HwB6+ukxAfQ3aogVuvNPLTdApOij3PP7nQYuwj7QuTDlRolJtUjJJzVfit5kLnT2Dbqqus4M680xJUROr79wLpHLrpNZlbji0d4z1flPZzVVlfy95nZ4rWLxWkt4lTWTWXJaZEbKaRb5aw315wIr9HGp2FpnqmTnNvbp8w0t1aJ47U1N0m/VVLaNnJyNCjpUTk2e3w9CwubbHHa+eqZmWrzcYwbnJQEuovIomeeb/nmyffCaS4syIqNoJbiVVhTI38MMpLQ6jSExnmHUfS53QY10K+ELy+h3jvaucdvPDsokTaIsVrb3nQWV7RZaoZOczOydATXN98vMVGkpae3uS01DbzceKyips2q6WFm+5L59qfJdGr9IyWia0oU9ha5/PRFRcruIV5BqE73JXN7SxiNkiStqpb+k09HCs9olFVW06BBLi64lJVQKW2qQtLbJbdykJUk2y81aQoImu+QKHW+XtSUuwxOstorZvVic6nmootVmXbnZHkMhL68WQZmtwjDSw1yYrssMP01pyyzMmpu2xn1Vg6AN9YDkqgBqVOART1YGi3zgHPqGwE4aQAgIA1WgzQGbrogG8RXQBxo4E3ArQGbDoIHI+dGBukMgXKSAtaTs4Hn6ZagAdc2ngev5ek0IHL0xnAIqHXAWrJYGVwbcAF1IDGbMDSFvAYa56MB3cn/8QALxEAAgIBAwQCAQQBBAMBAAAAAAECEQMSITEEEEFREyIUBSAyYUIwUnGRM4Ghsf/aAAgBAgEBPwD9lDimZOnix9Gm7QouK0kXof2RKCmtkfiS5TI6oy+xiU8TbW6ZPrIxdND6nFllUXTMMZ41vuJ3sa5ej8lKVNHzRboebbZHz5E947CdljHFMligt2NviLr/ANGmPMnZZZZZZZfaUUxxXFGlULTew1HyaEZcCnuZ/wBOct4nSyy418eRCfakbd7EmndljNKKQ8Ubuv8AUpFlll9rL7WWWWWWWWWWX3ssssssssvvZf7L7WWWWWWWWWWWX+6yyyyyyyyyyyyyyy+880I8sl1f+1EupyP+h5Jy5fayyyyyzUjUPJFHyxFNPhmo1GteGWWWWWWMob9k86XBLM5DWo0SfCF0+SRj6dLkssssss2GyykUihtLkllith5YPlEHGXDKKGj7LyfJL0PNL0KeSRok+WfFYuniKEVwu7LLLG6It9mrNLNyxySPkRkk5Fvwc8mmMPtZh6puWmXDExm3a/26kPJEeRDmvZKTjNR9ml+xr+yn7H/yb+xt+GRyud14LkKMj4yUKVoe47eyMjUNmZepxxVM6LOsuRR9bmoVlFL2OjFJzVy2KRSKTNKNKNKKXdl0NlFIhjjBVFdrNRkf1JOtu3VZFLYzQctzo8rxZ4yZqNTHL91ll9rGblM02KK7WX2ssm7R1jayJow5nkTT8HLJZKagiKjDPGUuGLf/AE9Q5D7M3G2W/YpM1DmajUN2ddjqKbOlVzf9mbC4MhhlPIpeEOHyTWP+xd7RaLQ5I1M1Gpll97HI1DkMafahIolOOOFrk6jNKSps6LTv7MsVkRNTgtLOnUlLUzFlt6XyjUORZqNRf7LNSHNLs1ZpFEaXd9kvZxsZo70jNjaZizPFK/BDJDIvqzLj1IhjfBHFcnkZofhl1sxP9z7V2pFFFdn2b9C27M2kkzLitWS6e2QwNcEcc3tZFU6JS3QmZ7WS0Y8mpF9rLLF2or9zYyPv9iSTNNo+NCxonGitiStDkZnFLWYm4S3EclCX7Gy/3ND9jVRoXeSOEWWjL/Exu4pmTNGD/szZFOKlExyeT6+jM3qbR08tcE2V+17ldqKKKKKHG9iRF2csokjwN0WZHtRi3gjIk1uZWtP1Om2bkzOqVtHRzu49qKKKKGijjwNryao+kbekfXykaI+kdRNamkqobEtxLs1sN7DkJkn7MH8EZMnkk3ujBjqCszpOLs6ZaZqUuD8TGfhw9n4kK5Pw4ez8OHs/Exv/ACPw4P8AyPwof7j5sy/xRrm3dIcp+EOc0v4klklzAhKcVclTJO3fa/sK+0uDVsNl7GRWjVpjSexKWzY5SeyMd1uOCk9zqVpk2dNnWXHGVmvwS35ZFteRJRdjasc0kfImUvRUfQkvQ3Xgbfozt6d0SaRZB/YsRJ0i+12ZZNK0OcWmvZLIlaR0008iVEO2ZPJKvR+lZU4yhXAmUvJsOKZoXgpji2fcuXsUp+y5eWapezqptvS2NXySel0jDzY67ZXSLLEyUkt2NJvkelKzo3CTdLcrSyyelKz9L2zSrhrs647sbRZOTfCE2/8AEUldUbeDcyT1SbJj5MKaxOxrtmlboT2LLHvsyUHdjSo6OMFF6eTJpeKLKsnjTW5+my15ZeFRpvk00UNMal4YoyrdmmXsaibPY0pFIytKDGiS8mLHqko+zLBQx12sattl0WJjVqh6ro0s6PE4LW/IkpYX/RGTuif8dj9NyKGRx8sWVLZiyL2J+i2ajUar4HJR8nzwq9SMeaOWOpcEssYcmfqFkVLtkZ0OO5a34Opf0LJSpWRi3EktOwu38tiTkpUzTJs6WMoQakL/AMckQHwdJGP5KSPhfsUIrtbYnJq2OTQp2Tzym93savRilmgkoyM88snbZFVFJ8jdHJHr444pKJ+Ws7pKqLMstqISrHbG23fZsi9yU92a2zU9P25MTjupPkg6JOlZhXx5o5F7Fki3SNiTjdGqDbUSO6/spPk0rwS6Wd7jxtO2Y8rhj2W5CUsmXU+BmRsjKo7Dx/LH+NGLF8cnfntldyolJsi2IfJF00zIkpMwKLy6WhpcE8PyVH+x4nipMuzKnHJ/ROcpRaR0vUZMTp8Mz9Y3WwuqU6rZmHrNL+5HrcbatizQkrTJ5E93E+XEuYkp4pK9BLLj06UqYupkuTWpsg46k2PK4ybVswtzbk2N0rJO0bogPtR1EVJpo6fCo/fz2xSrLFf2da7ypI2MlyyJGPBCrZ8OOCcktzLh1fZjwtMjBpUydpkJqS3F+pN8oXXQfJ8+KW3BOcU6iOSZ0tOZoTPiXsjHSZ50qFuNI3i9uyRVmSFLUdMmobl+zppwk9flHW5oqdxJ9doX2R02PH1EI5dRjmo/V7koRa0+Bwk/q+DLivgzT0fVEcakTwKu8d2kNlS8Dm4rYXUZF5Pysv8AuOlnKeO5Ozqsv2ox5dJHJGQ/RBWRgPTFWybTWxDqHFUZOrkovSjpsf0U0+aZnk3laZ1R+mXLFS8M+J+iWPJ4HDLW3/6aJ1ux4W/B8Uk+BQrwfG3uh4ZLkWOT3SEnFoUW96JdLN72PBNeDQzD1KxYnHyNSb1MXNCI5muSPVRx7D6xyWyJXLyW9Kj67ZGtLMHXKGOMWuEZ5KeRzXky/dnQ5YYsel82Lq8fsXWY/LH1eJ+T8nH7H1WP2Pqcfs/KgiLk+EapLkjmceWRzRTPlsnaumOUvDLa4IpleEPmxOyhwvcTcdmKQ52kWZPtFohHZIlGa3RHG9rIx0qv22WMf9CUa5HBr+RGCfJGLaTSM/1lSYpyT3JTtlaknEu3RRxuJpqxbEnbE6FuZ8nxwtcjzNqjHK4qhprld2V3oaZQoTqlRkxSg90OVrdkfdkZyX/A8kZPeIpLel/2KNrdEU/Ar89mhPSRQt2OO4rM9u9RLYwZNOOqFk/o1R4HFWbeyPspVuOrqzSk+RQVUKL4Y5Vu4CyKW2//AGSil/QsTa2FFeR0uERnvvwOe+xjg5PYUZQ2YxbjRjdbCRI8HUQuNk1smdKvrbJZb2EtLslPV4NyMXJaRtYvq9yMZN7Ccnsz5HHYnkbJym9k9iONxVs+LW7TRDopP+TMnTzi6SsacdnyJNq0Pfgi65VkKd0VsLsuCHAu2RPQ6HvsdM4q1NElGT+iJTWP+PP9mtzdNj1JmrxJFrJs6Pj0vn/6TT2aFXLY4OtSqhtxf1MeWn9zLLG948inKT3YpzXEjTFu5M1qGy3FN/4pURSupRsnDHDeLPA9jkWxaTLLHwTjpmzC7Y0lvZKKf8iauPJDDKatDxyTo+OXKNyLfljafkju6bFJvkpMit6JxVWYlGqa8DW5wy6FK0zG7RB2S7Icm8gmJng6nkxbRTQoRnDU1uTjHRqSNIm4rZjk7sc2+SKtkoKMbQ27ojiWlM//xAAzEQACAgEEAQIDBwQCAwEAAAAAAQIRAwQSITEQQVEFEyIUFSAyQmFxUoGRsTChI8HR8P/aAAgBAwEBPwCmUUIsU2jHqJIWtaVMclKW4klNXFkckoPk+1w6aJbZR+kyOGVJPhkNJKS4YtPlwq5K0ZpQyNOPA0bY+59mbjuTPkyStiwcrk+RBriXI1XhMU2iOWb4QklzJX/c3y6iq8UUUUV5UmhSfdm52PdXPQnJdG5mLPKHBg+IxivqNVHFkbyY35tnL/A2muiiqNzFJizSqvw2WK3+BFvxX4rKZRSL80UbRJFPxRtNoo/gr8NfgRfmijabSvw1/wAtFFFFFFG0SrzZDDOfRHR/1MjpcXryfKhDpfgoooo2M2ixSfofKl7Dg12jaKLNj9RxNptNpSOEJ2WxKTIae+yOBIT2qhTgvzMeoxR6Zk1G7hFeaKYo+Ffi2bmN32dukQ0+WXKVEdPmXCZNZIL6kWWJ/sVGXofKj7iwRPl44nzIro+akPUSHOT7Y/C4KKXiKsltXp4g0nyOafoPb4UWzYzS4Vjjb7fhwXoOLaoz6OKg5Q7Q0I5KYkdFFMo2s2sUDbQoKUHL2o3L2LT9C0IS/Y2p9jxONWbEWkb2YWpZFFiEY4SydENJkf1dHxGHysLcfXgpeLLEjJFQdJ2Wbmclstv18W/wbRIujcSySm7k/HJRpl/5UxK/GjxyXLXAtrVM1unjkwzgjazaJFFfioorwqFJL0N37Dk34opFLzjuMkz4bGEsLT9TU6dYZJx6Yuh4VL6mzVRl9mkodjH55835SNokLyqKRSNqNptNpSMWPdyfCNTFycE7Rr3UVXuYNSpx57MmaEY1LszamMcEsn7F34plMoSKKRRQkJeEmKNigzaKPhNFFDILc+DHjnkns6j/ALNHp4wluiqNduTS9DHLY7NPPFOW6Ss18sc4bI9GbDS3roqxIo2o2o2oorwotiixQZ0JossssZF+Nt8mxJWjTSpbpGlyqUEZ8Ec0f3MmKeN1JEJuD4MuW2SyxbWJE3sVsTTVrxfiiihJeOxllnJYmJiVnCKpnaEuBXC4mDLtdWY9bSpmbWbuCWWC5ZknxfuYYdmSO6NGmX/ipk4bX/w344R2P2EqIoSP1Il2RHKmS5Is3seRkXu4J8RVkGt1rxCLT2oyrfGl5svzQom1iGeguPCYmYnzbJRfJEb+oi7XBEfVDT7IdmRcUYtPKfC6McJQyOMjL9CsxflVmdKE2kWWWX4QnRZdG9ikcCExMxwumZYuKs3Ur8QdEeBDVm2uTJ2yDkp/SzE3u+ozcraYnbpGphwpF/g3FosTNz9xSfuXP3Z8ya9WfMyf1MefIupP/JocM/lrJJt2Q4MjqFsnK+PEXTIISGiS4Zl7ZCFka4ZlbrgwtqSM8m8bUe6PvLMvY+9Mt9I+9Mt9I+9Mvsj70yL9KPvTKu4o+9cl/lR965P6UfZ9K1xJ/wCD5OBcbmLDhf63/gWmxPhT/wCiOnxQ5jl5/gnpIyaUMlr+DDB44KC9BJMypbORpeIfmIooa5HwVuk77EuUiklyZFwqJyUOEad7o8mq0ksWaUP3Pky7EpJ9ElY7kttG11RsNqXhlpCkje10zRNzyGJNqmKNGpVwEn4xq2KJQ0bVJUxQknfsKDbsyQpXZNDV9mOoLg+L4HvjO6slGu2bH6Gx+xtZUvYcZextfsbzezcb11t/3/8ATdH2PhcIqLmlyyLoXJq39FLsi2WYI8i8MabVFtLkW5szOcZL2Zjnvj/HA42Sg4u0fGecEb7T/wDQlzwSi0K/QqTYk0KzrtoXAyvCRo8LwwUWR8avJF6uO18pEZe4kmYIpIr0KK5J8dEZ2i3Zk3b05dGmc46uab4Y3RObXXZ8XvFhil3YsskfMk+Wb2hTT5/+EHBdpMlkg5fTH/Y8kF+koSLLNNBzyRRjbXBFmozfKxub9DTOWTOpP+RJCXInVIS48NDfqKqHJehkzKU9nsTnLHro16kkqJx5TZ8Xx3hUn0mOMX6jSEkbUjgTLYot8ULT5b2qPJl008UtkuyOGU+I8s0WklBuUiCoij4vl+hYk+zRY0sliRji26JTSlRB7uR+J8KyKi1aLSMjUsilEyprWY5V+3/RNE4pq2fELlpH/b/fjkfBJUSik6QkNUY9PHGvpXJt9DNi0823KJgxYIJqKRHttdMiSe1Evh8803KUhaOWn7d2JNGCPNk8d5tqEklQyuDIvpIw6HBLgwY/qcl0ayMk4zgradj+pWTjfBqYueCWN+w8Mkro2sWN1aHhcUnLonBDhXQoP1FnjXBuVcGTAsk+ejLCOLFtXZj65IpGWO5ojP5cuHZmyb0kvQi74MMajZGKQ0MomrVEW9pnclj3JmGUmPM8Ur9DHmWZNxJx3KjF+SmY8MISTrlGs0ePOk12v7GD4akpWyWhlC75Rm0LkvoRL4fkSbSJaece4kMTSpSHjyv9RGOVPmSI6fLKXLsegj+lmTHLH2TUtrI4lKKTM6UGkkQjuaoiqoTTJKxeJcmN7bRmyqX0PohL2NQt0ZP9j4dGsTb7sl0YvpjZl1Ek6Qs85tJ9MxZtv0oWVNDkrsVNGTE0+B/DIejJaCXo/wDZ9lyw5XJptO1FSl2xxPiXGO0b2hZWTlvdGmhzY+BM7XhssUuaNRTmRXFIzYpRuPufDdLKeP6uEP4Y5flkajfp5vHtujJD5j3rgjJxluQnFfUuzFkrsxY1J7mSyOJDO758JCi7oSonmSfDM8VJJNDwY33FH2XF/SazHGGWorg0mL6bZPGpckscoiJuiUinJ0hxaaHoVJ7nwY9LC/qdmfL9bi10aTGlp4uPqjGuD4o1HLb9UfPVd/8A7/IsuP1FlxP9/wCwpwTtIjmivU+bFrsc0/U3oWaL6PmqDsWaGWDT4JSSdJj1sZ8V0LNB+puRm0zyZVL0FSVI9B8ksKfRLTSmLSKLtsjUDat7mMj2ZdA5zcr7NC3DEsL9CCo+K4MmXPa6SQ9Fk9h6LL7C0mVfpPsuX2PsmX2FpsnsfZJ9ktq7ZS7RLGpIljbTFirgx00rQoxvlFJ0NiF0PgsUqGr6HFkY7W34jxyWYs+Oqaolq4r8nJObnLc/+BL3Ob6FJPocn6Epxi2mzTu421wNJkVwblFtMXViHydcD/cXCGhoxx3McESVdiZflMsssTLsc4t27MeRTXDK/Yl/BKEX/IoSiuJDTpWxyp8Mk16i7ORSsasfsNljIUuhonFylus2n1LkU7Rf7Eu+BNibq6N1m7mxyXZFXwpDg1yKTHkSfI2/T/QrfbHG1wKPHJOaiuRSUuUegkdEl6jLEiDp+Mr9ERxpcl3wRi16nBJ7XuEnl+tcEpJLkaiuUbL5IwSIRiuWiU1LhHzNvDRLVr9KIZoSVt0Jpq0cdM/klG+nR/JfIvMu/CF2LoybmvpZFuK+tkYuf5ujYorgVNG3+kUXDlG/cuv+iDXKY79EKava7sStcmSFr6THGa4fQ4RiuEOMG+UXJKoo2uXL4Ni9WyV1aZinOT+pD7EvDKKEJ8kSa4stvhoTrojxLonlUHTFNNWj5kfDQk/YlwrSHFLktofuQbboyX2n6l8HZQ40ySpkiJ6ePYaEvEXwS5jRvlGe1Pgxye5ps3MpSfKNqqhRS6JOkQm26F0TyNM//8QAShAAAQQAAwQGBwQGCQQCAgMAAQACAxEEEiETMUFRBRAiMmFxFCAjQlKBkVNicqEzQIKSscEGJDA0Q1Bj0eEVRKLwc/FUgIOTsv/aAAgBAQABPwL+ytBya9B6bKi8FSZSmt13qkbCD/BNcmlFZKUmiAEjKT2lu/qtNfSaA7VPZ2DXqUq9YC9yylEEb/WtWrQe0cFtb4BZXHiPqmwHiVlczi1GSuH9sCrWZX1B3NEIq1ncto4b0H2t6zlhWcHemgZrAWzY7ghAzJVKWB7NY9Qto7irC0PUHaK1HXvJ8bfdWQcU9oB03KgWpoHPVbROeyQa/VEUf7FoHFZWfEsvJyynmgx36iFmVoOpWrWcpxtA0sxRdatMcWlB9qN6aQQsXFfabvW71bWYom/XpNDeKIr1b67TZEZP1MKx15UR1V6loOKExCbiOalLSb/zG1f/AOiAaTuCELytgea2HigwD/NQ0lNi5oNaOC0Vq/8ANKTRzCDQgAFfVSrqLk5/6hXVSylZFlWQrKVXqUsp5KiP1Kk1iAVKuq1mW0CMyMyLyf1W1atX6r5cm4WToEx5zalCdpNWFmB4I1y9XRaLI2t6LVSpZVkK2ZWzWXrtZ0ZEZFmP+QYrpOKGw3tOU/TDv8No807FyuNl7l6TJkBt58bTcUWgNr89yh6Qliprm5r1u1FIJIw4cf7G1YQpaIvResxVq1f6lSyqvUAVdVKvX6Yx2T2MX7RRPWHkITZt4CbKyM9kZgee8JuM2dbIkV4rCdJ5zUlBA2LHq2r/AFwf21LKp3bKJ7/hFqV5keXHefXiaXFNcxjXN2ftf4ro7FiVzGtuiKIPA/qlIlo3ub9Vbfib9Vbfib9UZYxvkj/eC28P20X74W1i+1j/AHgrm+zYfJ//AAoMQZohI2J1eazy/YH5vCub7Nn7/wDwrl+CP9//AIVyfZj5PW0eP+3k+Rb/ALrbH7GYfsraH7OT6Iyn7Gb6BCYn/Bm/dWd/2Lv3gszvsXfUIzV3o5W/sppzC2gkeC1+Epxy94V5r0iPhmd+EWtoeEMv0AQdzjf+S2tf4cv7q2x+xl/L/dGV/wBi794LpbpB0oMLAWN96+P9hg53QS3vbxCkj1JZdXuXRTCJ8wXa5D6rtch9U92TvZR80C8+4B+Je25xfQqpvji/dP8Auvbf6R+qvEfDD+8UDNxbH9V7bnF9CnzzDFMha2NzqzOo7gv6wTviYP3lsnnfO/8AZAC2R+2l+oWw/wBWf99bE/bTfvLZH7aX6j/ZbH/Vm/eWwad75j//ACFeiwcYgfxar0XD/wD48X7q2EI3QxfuBbOP7Nn7qyN+Bv0WVvwt+iMUZ3xxn9kdUTY2MqIACzu/sa9STDl+Ojk0DGNO7QkoxA73SfvlNhiabEbb5q1av1OmDeKzcSNfVZqhhgQo8I0rDdFsfwUXRUbPLkjDHh300V8lnd7kZ83aLLI7vSZfBn+6ZG1ndGvPj/YADM45dd11+uWrVmzqr/sOlmZMRrv9WPvKE6KLvBYWTImyWpjevq1/lv8ASIViWeLeogjeOuCFz9eCjaGhAqMlta21R5QG2U9zWQnw/XqVerf9t/SGLNhWSfC5YVoM2u5otSx7WEXqSpYnRupwUYt4TdGilakzH3sqZmZDmMgAXR08kxyPKbFJJJnc4Vy/X7V/qWLh2+Flj+IaLDdmfKdL7KPda3hSyCRmo0WXLNXim90JzbUOE2j+HzWNjdFhmx+5xpQezdYUFSQ5h+tV/Y0qVKlSr1aVep0j0vkcY8JV8X/7KRxdIX3bru1ERMwO4FQW3M07uCl0xTvNRODm9WH0eulMRWGYziSmWujHewd4f29KlX6xSpUqVep03jfR4dkw+0f+QQBcQANSnYbLG4uPa5BYAeypG2m1P+kKglopkoKMwhGdynxJmdZ3rDGR+bNuC6PGUVd+vSpUqVf5LjekIsIQ11uefdCxDnY/Gue0Vm4clhcPsHOc7U7gp9ziVgx7JpWLdlCe63X1RO7QWIhe85+AGigw7Xmro+aiwrYozkOZ5TXua6LZOytLu0RyUGIbJI6O+039dpV/Y2r9bpDEejYVzx3tzfNSPc9xLzZ3krBw7PDB3vO1KephnoeKi0YFim5mJ4o9TXUVDMXZvw0mUXUfqosRUWXgsI4Ogc3x3ro17dj7FhvmeJTO00E7/wBVrqpV+pvc2NuZ7g1vMrF9Mxs0w7c5+I7lisbPiP0r7by4LmoX5491aKXRFtOYPugpm5SNL2VdLEwuZqetpoFRk3v3rMcoDNMxIUBLYnlvutXQYOVzs3YTulHNmdkrZcCoulo3Gnjw0UUjJR2HX+tX/bdJdItwnZb2puXJYjEy4h2aV5d1FBYJ+aAXyUrc3zU8JMLXt3s0PkoymqRodoQpcLWoTmlu/qiOaTwW0yvU7nRujDe9vT37GN8ETrzOJJ/kiA3CS3xIpXawuIewinLB47MAJf3v8m6Q6VbC4xYftP4u4BPcXOJJsn1Im29lnRxpRMMIDfhTjZaVGpsFZzQnKfhKp8TqkaR4pzgEbfo0Er0Iu/SaKTAs4IYIh3YOqjwpdPmmFMHaKe/aSul5nsqMceSxmkDRzPVHvXR7taKExglA3sI3Jrg5tt3f5H0zjPR4dnGfaP8AyC4+s0iVjJB7zVVZQo0FSMbfhb9FlTgqUo7fZNUsdJUWzzUXavPIIND9W6NA0UDtQukR/VmOG666gaKw78rnEe5r8liCDiMNR77D81h3bM0d3+R9KS7bGSO4XQ9UdXRUtsMZ3t7Q/mt/aTUFavqcghzWMl2hJ+IrCGpKO5N7OZE7TBTN4tcKVdm0O47mFDJlfZ+EtWd0gwNb2afmhuUJtpHI1/kPSM/o+De66cey3zTkPUHVA/ZTMfyK4JiHqFP3KTswSHwKlFFv4QsORn13KNt5hxFJjzs5QN/eCY0bUN3RS7vAox7J3bb2LyuHJPaY3lrt4XRjBl2h0DWra97LrTtyhdUgPA/5D03iNtiMjT2I9PmihuQ6x1FQuzQRu5tCjQ9V6xhrBy+Sxf6QDk1v8E3RQHXN8kW+2fXIlRHXKd1oNa50ucWx+9dIYYjBsfvdC7Zk828E12TDYduuQst2XePFdHi+0aJHZzD3gg3RNdY8f1+d+ygkk+FpKcbRVodY3dfRxz4Jn3SQmJvqFOXSX9yd4kBdJNy4x48v4ILCRmVrwHNFa6qLCxZhnFvG+ifmukujmwP2kXcJ1HJYXtA5uKlZmwkjD8JTJnRvjr4A0hYKsnZ3KJ4e2xzpRyDbbPiW5vz/AF/pqTJgHAb3kN6ihvPr9Du7MrPmo0PUKcukP0Mf/wAi6WH9cP4W/wAEExRYmUyZXP0KlxU7mZXvLhyPgoQDHbdxbYTNynFYpzb7mlrDyubDpvldlZ/usKcsDfg3gpo9ux/L9f6fluSOL4RmKdv6hvTOPUPU6LdlxVfEKUe5D1XLpP8AQx/i/kulmBssNcYwgo96g1U0RMMjx7vaWCdpY7tZk51NdzaoGekzP1pvfefBPl2sbtmMuUgR+SgDdS3dlDaTBogbA/Udo/4nfVbWT4nfVbV/xu+q28nxv+qE8nxv+q28n2jl6RL9o9ekTfG5ekzfaOXpU32hXpU3xlely/EnY6Rgsv8AyU0hkkc9xsnr4pvH1sM7Jioz94JqHWepy6W/RR+ZXTH/AG3/AMaCgboSg2qKw4Bjyu98Lo1uQBp4Et/NdKSGHDyUdTQ/JQOrDTDi6vooTTG1vWEkp4jC3C0ZWxtLjuXpkX3vovTIvFemQ8z9F6XCeJXpUX3vovS4fiP0XpUPxfkvSofj/Jekw/H+S9Jh+Nekw/GF6RF8YXpEP2jUJ4vtGrbxfaNW2i+0aqPzWV3V2fiX0WnPq0PHqDb4tVeCrwWOd2mjkr6ymd31uKYm9Z6iuk6ORp/91XS4IOHaeEaYMzqRbs8NA/4yVlGeFn3sv5LDHOW5T3HlnyUJ9r553rpmfaShg4alN3KB3HluXR5rE6nd3vPknSZhlafNRNfiHEklvDKhSpUt28LetRw+q1rgj5rXxV+KzhZgs17yEfAhWBxVtPFNw5+F30Rgd8Lk3DukdTGX816PRIdHqjCfdaFsn8W18lszX/CMdbx+S2ZO5hUMpiaQY2OB4FqMjt+ya39ld5xOWvJYlwfJpuVK+opnd9Y8VFuCb1lFFYlpkndl7zRYWNHpEsWmmbIVho8hxBdwjOUoR58Lh2H3SfqhHmnviw5q81h4Ml07iCosKGy6l3d/JdIxbHGysu9UEHlvdTMRsoBFGLeSbPyXRdhsgebc42oW04p7XNkcORXa+FV4J1jWijI88FtezWQXztbRtasrxtX5Jv4M/PtIXyrwTvBo+aGvuLW9yNjyXb4AoNcTqD9EMZLxF/JemTOPKk7EPPHtL0t7R3Rr4oYl3IfVNxLuO78SOJefcTMQ5re6LXpZA7v0XpTSNWFekNeKyGl0jPG3CvDN7tFfqs9Zyi3BN6yiisW/LjQNwdofJSMcx803uh6dC12ExGgvKSP4pwrDDmX/AJrDntZluUsoiiMjjQCxEpmnfIfeK4KAgOPPgeSjLW6N+qwkuz1dx0UWhWKjdntoBBWXm0prW33gizxYUWVxCaATpvRewLslU0bgVlaffAWVvxhZB8Z+SJHF6L28j9Fbb99CQfe+iyE8PzWy5/xWx8FkRi8VsgPdcgPxj5prfFypZ3Dj+SDr/wDpdLvuZrb7oTlfqR931om55WDxUSb1lHqxrC7HtoX/APShObDubdtLNFgnNfQzd1SyNdDbTvnLvko5JCHbON2/s6J/pPux34WulZJi2NsgytPa37/UtYS8TiWA9xmpWY8E5zt4FtorMTqBqs2bfv8AAI5fhKyc2n5LLoVswFlpPbrqT8ysnisvih80TzNrN5onqpwF5QVqeC7QGiL3jUarPKeNeS7Z4m0c540htF273BOBvQoArGn+sv8ANH1WbvW6NZmnLvhUaHWU7qdk9Mp41d3TyNIYRkcjWtzAcNV6FG2N7Wt7VGlBEzZktFXRHgmsp5dzN+SNEL+kjhULeOp9Xoksbg7A7WaipZTH0tGB3XtDVkBLl2ONI7PcN62jQauvktDxCLXcCFlPEhFnh+ayDiz6FbLk1yMPijAfD6r0Z/JejlGAhbB3gtrxLBaEw4hGZp3ArauvuhbTm0/JZ2EahwVxD/E/JezO6Q/RZB8f5IMHBxPyUxbBE57zoFPI6WZzzxR8fVj7vrdFN9mTzKjQ6ynIrpI1I1w4OCjkzsa9E9glbRo0vhabK2jruU+M2Rssdk50ukMQcVNnIobgE9uUjxF+pgp9k/U9neo35pn4l/DRvmsFPtN26lMameM2qJ8UHcLd9Ff3inPF9435prqOjnJr3fGjI7msxLefmUCeTQt+8MvzQOXcB5Ws7vhcs48QhlreEG83L9r8lfgSv3VpzW7i5Wb/AOFm5rMy+6m5Rv0Hmuk3jYhrePruifBlEgokX62AbUDVGh1lFFYmIyyZW79EGSNzBrQI6oDkmwvZCxkkltJo0FLh2sLHPstd2LtYeBrAcrQpGNewsk3FY6IQYh7BwKfGZOj45vs+wfL1cHE+ZgjaKDTbj4qMRxZcO09pwtSZrFagCr5rO6wCD9FqXbqRAvVo+qOX4CvZ/CmxNPFbMV30I/vNWzPIV4LKB3ozXkuyNG7QeQRyk6tk81baqnraQ+XmsidodXj5Km8ZPzWzZ4LJpo21Vcgr8VZ4glZvBZvulY829ulaI+rhTU7fNdLkOMfPXX1WNzyNbzKgTEOsop6xcpiexze9p/FRObQPuuRo9nluUjrhcxwvRMfpvWOxbYIc3HgFO90sjnO3ldEFvojw4A9risZG2LEvYzug6dbOwMx38B/NYPECHAZY9ZHG3XwXReWbGOkcS5zW/IeCkma1xbR05JszeJ/JbcfFRRm5Ft+KEpPeLCEJm3VIudvyNPktt8TK81tQPcb5t1RLD3jILTY2aVI5yexn2h+YQMVVtQPNZI+L2FGBhRDjvWRZEGXzXd3AlNe6uKdICd6DvElWa0r6IChZyqaUySlx6j6nRkJdOJPdZqultdlpz9Xo9vtHvPutUSjQ63IqUrH9quYUUmXBML+G/wAFtddPNVI+cuqm1Q81h4rj1duO4cFjejRMHvaXZwOO5FdDm5HtO4hdJs2eNkHPX1MIzaPa1x7HFYdrWCoxTVO+5XaVqgHHl9EA7hX0Xh2b8Vb2ne36Lt/G35hOLgd7fkFtjuzj5hZ2gUXMPkhIwigQF8wU/NzQq9dT+JHNVVY8UY3XxCy+KyoBEDmgGeHzRDPiHyQa3guz/wClHTh+SxTyIH1VeSIvqPWNVh2GOFrWnKKvcukGjY5i42N18fVwIy4Qn43/AMExQIdbkVMUxrH4gNk3EfzTcMHNJNEkIx1FQ7J4IVl1Ry58zd53p8lLFEGeQt7pcaXQzgMV2uIXTrW54pGneMp9TBDUX3juTJBG3XfyCzNIzAOo62AjXJ6Av40Y4uLteRRjbzFclsGcHIsDe84J2Ue64+QQI5OH7K9mfH5KrH/Cyfe08kabxbfkrHNHwP8A5LaA8FnbwsrN9wq3e72fkr01Wb7qGvNaLMxv/AWPmBhyUcx9botmfEatzULXtF0peaMOPC/UKaMuGw7fu5k1yh0am9bkVKdViXlksb+TlHJ7NpB7JCdLWhQmGo4hFzn/AKMcV0rLMA1u5pG9PWBdlxDPErpT+7C672nqYJ8jJ2GNoLvFGMYgNEthnFjTv81iHbGQBsbMtaL0sX2q+RTsVEfcsr0oA90Bekh/BNmbegKD+bXFZ/uFB/gAjKz4q8k6Ru7UppHwikXR/C5qD2n3y39lWOE7l+Fp+ay89PmjlG91K4xxW1b976Kydz//ABXHeUXXy+qDvwn5rFybSdxR9XoyDJDnLqL1k8SulRUzLPu+pv0WLpsjWj3RSw+pTDom7usp6kRjMkgaK71m/IJsDg1jO6OQUkGRpJtxZrqmxgPNADS05moI38fFdIxsdgpPDtWpN6gNStPiuls3s8xbx3epgSM2pWGfmXSmr29Vprb8EGN80B/6UXNbpxWfT3q81nHEkoyDl+azBAneAB81tDxe3+KD2/GPor5bvBZdL086Te24AEWeFJ8ErLzNFg1uUeFlMmQjLzNKfDRQ0RI5+bcsumv8E7K0VlOvBNic802ImzqukZm4WPK1lSnTX+Kv1cPE6aUMZvUbQyNrBuGnV0tJtMVXwCvUwTc+MiHjax9jEXzChdqsOL9RyejqVi35JW+Z/ksHiC+EF3e3lGTM694TpO2sTPlikLT22BdI48U6KLXMKceSKj0NrpJlQxu3gnT1I2knsjXzXRsMjcOfHxtTRCNjdDvOp1JRA4oAcAiQ3etpyaSu34BZSeKohozX4Uuzz+qlyOdplHCuS/dR13gq/ks/3vyVn4Qo8MNnlI7LjdJjGxVQFrKCLq+OqrON2/epsM172/CG7gnYJm9krh5qLCN0txKEDG1TaK/pMGCdrdM+/TgPW6LwuwgLnd5+/wAFSG9Y3+9zX8Z9TohntZJPhaukm6Ru+SwrczlEKHWU9PTVjj7Zvz/ioTsmVvOh05KJkm2zDuEWbWx3Sl11vpGJjmuussg7yxEToXljxqnoKRm36Ksd5nqYb9IsFLmZSxfajBbw3qjeqIKDTvOqyvPFbLxWz8UIvhebQw970YAasUnRgcAPktka3/QIxHhRWR3AKnfCgA079E5oJ3LL2dN3FMCc7vIurRB9EDinzhjC59ZWgkrFTuxE75X95xv1cKCcRGGiyXCkY2bUdhNZH8HzQgjo0NV0nQ6Qno32vU6Oh2WEF739orHC8MfksBERqUOsp6cmqd2zxURpjuFO3b1EMzXO0ALtByCirvDja0DNOITMrIyw91YyczSlzkStxXQ0TpMEaaXC1jYDhsVJCfdPXhoxK7LmymtPEpk8mHeRnew8Q4Lo98srXZu0yt9LZ6WbryT2Vvu+KpZOabFe67To2adnVMhZRzHcNwXd4I2/XdXJa8VQRq64rIUN+8IUe0nHRNtE32TophQFfNBpkIpYaMuzXR4L+kMmyweRvvHKner0KzP0hFfu9r6LNqPBRyUm1VkUpXZ5Hu5m+trc72tHE0qy0BuGim7RDfmo9Ah1lPRQC6VbTmu8f+VgH5oIh8yrLczeNGgosSHxAts6LHY18nYZ2RxRCIXeK/o89gwjQ3gKK/pPf/VXGtC0V1wd5YTLOMkjGurmFg4mMc8AAZ2Umsj2eR7f/fBYWJrGOGrgd9qTDxPBtoBKdA5rnAhoIWUtcK73MJ0ZAo6Xx5o9iSiN3wrKCwF+muqdHl1cez8Q4p4okKkfmqVBCbcjLomu0sK78U4NpxPvKPu6aDwQcBoKX9JZrnZE3c3tHzKPq/0XZlZLiHN39gfzT3t+EUg6rWZPGV7mneDXX0TFnxGfhGL+a4LNmkJTEEEE7cndePbtWkDz/wDfqujrbh2tsW/UVwWyL4s7rzBuiw42kDdKveF01lDmjKM51JRRQXQhy4d/mumYDicOHNHbj3ep0XiGUGk9o81BrI0Hmh9OSa463S2gU4jlALz2m8kI4y5p1VNdqWqSAPfmGhpPZkfbLGqyZsznEH5J0TXd3MdfonQ/Fo7cFLh3gM1zE6J0TgLNIsdlvLomuRea3LbhbbxQn03puI4XonTml0hgJp5nTROD82uU6FOikG9qPXgMI7F4gRiw3e53IKOOODDtihGVrUwM3kZjyRb+fJZGjvHQC1PIZpnyHe4319GR7PCt5v7RUzqjobymdg+CYgggpN3XI7gFJHbfy+q6OnMUta66IPuMc0+UQR+C6RxAnnzN3AUj1M3ro1tYX52ukJzBg3uG/cOsLo+G9XKA9tl8wjLRsBOkp2m5CXhYRkJ04Jgyv7eizi6Gia7TXenZSO0pGNDexzugmU3wJQAcNyewOY4J7cri26v813DQykHTzV82L9kIgXw+iMbPhafJOEd6Zb8kMg3ht+AQaDuh+i6RmEY2TW07j4JycwHgpIKPZUOFnlcMkT3AnfWiwGCjwkGUG3HvHxUjW7s2VRkN5GvBMLDq8a7lj79BxGQ37M9cMZmmZGPeKYRTjuaNB5Inaa8FlURrslNQ6pOpyDaUo9k/yTIz/wBQIb8VoTPdq1lD72i6SMrndoUwGlSPVFq6lGGiNrRupdN6YP8AaHW3fosCeCi0LU8mr5rju0QBdahOjuPBXz3qM27lpaZJe9E3l13rNV3wVmzajd2dKQ8VMzMLG9ZSDmDTQ4obPxHk5AtG6SX6ra/6siD5L7Mrv3VmkPfyO82Jktd5jFicbLE3RzddwpSEklxO9HqeuiZA3CFpvvckJGDd/ArbN5gfIrbD42LaA92SL5qVzdk/ORkym+119Ex9+Y/hapzTRGPmsP8ACVSpMPNN6n7+qurehLsHyv0sxfnuQbpDCe832jvFY5o9Fe6tU5E9WFYXytYzedFkDWBo3hdLxyS4Omgup1mkWOG9ptEVvUTc7qUE7GubrSwM0c7+JrfopQDutahO8NEyTJw/JFmbWPjwQ7ELtd6DzXNVmYz6apxP3fBQR6EuQIbv95WL0W0Pgopb0O7qrqsjiVZV8ysU63gBPPBEonVHcuiv7r+0s3ii7r6UOXAS+OnUVG0YeBrT7g/NNGZ177QHaCpVRVJppcEd/q4/sYsXuB/msE8yjanvFdKYrsbEd/NqjZ39WBwT8Q7W2x81Bg4GYUCEZaPaPErZ8LPzWI9hAXbzwR7TiXakoMtYTAYd7bcy0cMyFgETdE4SVo0oPdxBTi2/90HN1vVZmcd6D9Ghp3JzrATTryWeyojbgHLh95SO13doJ9tutyshNfx4dQbYvSvEqSJ7NXVXgb6mQPcOzl/eTgWntDKQpnG7Tt6ZE6XdVIYN3xNThosD/d/mteat3NBz+azu5rpN5OCeD4dXR0e0xQJ3M7SnbcDj4pr3Qvtv0WGmjl7pp3wnqIQ6vdR9Xpdv9aB4FR3siyM1TQQVjcIxuCzDvs1vmoMJNiNWtpvMrD4KHD6uov5uTHhzw1gLiodI3B12Qsg+Erpd9ZGDz6oO+FhB7NGsmtI5QLFfVCQf/SLr96ii3TtaoN7Ouo8lTPh/JDDh2rWfknYcA6ivmhHl7u9eJu+YQJ5/VC9fFOHGtQi4uaAS2llJHed8lZWlofOlfgvkpnUzzW9/kt5AG9YXDzslzOIDTvCyjn+SdxWA/u4vmj9F+fVwXS5rDN/ErXQ8diR3PRSD2LgpG9pGPisPinM7MnaH5pj2yd02q6vd66VKl0rFte53oxr4ro09unbk/EbSvZWRzTpZX73V5Jo5rAf3lnmp2DbO0WQeP1XSLfaA8wm8eYWG94+Cw+kYRPs3UnSuLSLryC2kn2hTpZT75CEkv2jkMRIOIPmE3EyV7vnSE0mV3aq/yWeT4gfktq/k1bZ3wD6rbfdP1W207rkJ28nfRbePnXmCttF9oz+Ca8fEgb00DuazGqpVf4UDfA/NTRl0Y5rXOQsM6pdReiZWUb1YzDRGHPicp3Wq3AI/+leC80Da6V1wu7c7emsL3hrBbisJCMPC1g+Z5p95HWphy6r5hCnd06/mosc5jsuIFj4uKjLZG20gjwVLKqT3NYO0QFNjdahF+JW1kI1eU8hozF2WuKc0GRz6Fu1NdQTlgNJmeaxDgJnIkc1j29kOCjHfUDqkDfi0RmqdkYQfm2mU6XXqadQ9bN4ou8RQQcDuWZOfNE7NLqN5IavSModXacDu8F6VlLc4Z+8UNsXnWwddU+a5G9l2XkE/EEvOQa/NPbK6UXkPDs70GPvum1A0mFudtFZVjXyx4qTJmHivSJywe0+gQxzm9iQNsb3AoYq82Vg05lRPzxh9XfJNeHHS/kFKzasfHXhvUGGbhuBzEd9Z9T/tuVitDfinBFFFqLgdJB81GZIHZ4XJnSGZmrO14FDGPcaFBOke7e49TmoBEc+fWFSwguaIeKxv96f1Gq1OnJSMazucVENnG6b3tzfNNtuF2hPbJyBQktwYr4kZHHktoVnPgto4raOvghMfhW0Omm5bUngtq5bQ/JbR1LOVmK+SB5IMDbLH7+BFhbCU+9EPJpRwwHba1oPhpaYwhmWnDitjJs9JC8eVKaHMfszytNzNLhkcb7x0Rl2eUE9h3A6qE9jqxTQ41u0u0I2g6NO7tA6IwQyVuYeRKbhomtp21rjSijaxpY3aDjaETHTXYHCjxTqIY1zgUYmMLS6+Z7Sc6J2S3BNB7Jvsa8f4p3UUfJEeCot3KNwzckTlkTXZh10ptcZA3zPWEFgB/Wc3Jixrh6S5WpS4HTcpHap5stYO6z8ysQCBFH8Op804jZRhutIHnvXzR/8AaVjRbrQJvREo+KG9X59elUtAeolgHdF8l6RGHH2cubwCziS3AvZx7bSgJnDsvicPmm7Y78O8eLHp2GJaKLm+JAKGF17bIneI0KOCbRygtPgU1lKl0mcrmbhbFFK5tlzh2uIFou72V3Zdq21HkcKFO+/eiY2K8z3EeSY5rox7zuOlo17pzfyVujNiy87zmTWXG7K0Nbvq7WJk2cDs9b8oAR6qTkU5OBpMdfZeaPAoPMTu2musX6wTdKKwoJxbMnksQfbTfiK36XqvittrI08NVkAIPEJx7WveK1G5XwAsq/qguHVdfJH/AO1u/D1fX6rzpcRVJt+NFcN3UDFLo8fKUUtixjriihHinG299jX/ABAprWvqyyV4TmtBvLr9EySZ7aLMjubXgphkGj3tcQtowby35OHXicuxBe3MAeVqGKJ47ETvmnYWm0HgDxasklublPnuUTX7VzpNG8EQw94LZgSXWQHTs0UWNPaIvzYsuVtudlBPksSbxzWnXK0uPmuCrqKcinFP1UAzBzSdOCw78jsrvWw0O1epGduhqsDCWuD3LHuezFSW0ZS460tbNAOv4N6D+GhvdfNF7s1OA30FnFA63xpOpzqp1rMQdd3idE3eG146JhOc9nVOfTar6rNTwM2iymhd3/BVrvW7Q8UdDWngm8OY3hcDaBs6bk273UOGu9ckKPZpUAdTryWRz2jO5jx96iheatDz1T4oC7cY3cw2lstc9ZvEij+RQxMMW97m+RzIujlFxOvjlZvTrlboNj95xtNiiYfaP7Q+4KVHKwjUOFilRTi7ZuyAm/hNUjJOPekZ+NthNdKR3i7n2UX7VgsvjP3Wpoyb57rm3VFl/o3WeTVMzZvBM5vdWYBCc+7G55+IvBUMZeSXd7w3BHtTYmT9lN7o9SQIgotUm5QMytBRFpu71ej48osp/fAHFN0pqxzHNndJqY3eKluOO3cOS2xfRYex+YWX6nULLTtAC7cspLMtFjh8JtZC1zKsEqmx9tuWroJjO07XT6LIJmkF2laLKQ3WqbojoK3O4WFlNdm2k700Fp1c0+GWlkL21YAHPgve0ATwQW27Q670833QQUfg96+OmiDiN3HchxFNBGunNHtM73/KlzBjg5mcbm3Wqw+GLm3ljrgowSN4rlZ/mi19Gh9V6KL1w4PiKRjDHfoct8ghGANDl8k8OB0fL5taEXTDdOd/GNYiXG3UbGvbzATMRjGGjF8ixemDL22yRu45FHiGFvspbd/qnRRyzvdW1hNfCnslLtHU0b+0osXETl1scSFnidwicfxJrYw/tYdrfEFOjhu2OIP41iY9jDlHeLwU3j6sgpFSG3taN1od1OZyUe5X1wxkP7QWFNNQq8zjSjd8IK6UZs8MzWzmPBW5uSx2NK1W1Y7supvjwWzqQZcjjfxZiqa5xslhcNaKYdg10Vizx3ranat1c07x/uryDtcfiTn8RXLxQdHpbvluVjTt5eYLN4RmY+Usboze2wRSbszE2nyMrcUDYzB7Ts/kgM+ZgDud3x/2R1L8gA5tveo9AWhro64KgS7IWl3HiiANb7G/RRuJYcjL03XvT2muTt55jyWW36O8gV6Xjho+PTkW2nYl3vxx192wo8VAXe0a8HndphbJHcUppPglkJ9oxw4AtTIZGt7wHkxSRSOZQcM3PUJsU7XdrOfFsv8AJOcI6zmT6LaQuIqUDwLUC7hJGRyUobI3V2U/dKDYmDWRp/JHMB/d38r36L2etxTD8DaTJ8OHVt5Wn75WZorLJmbzFFemRkluZhd+AouBOeXDxEfFmWM1kjoUM+4JvfKPqOFqQUnaPafFN1b4J2ZviFHqiFR6sJiA9mx94KMHX802r8erEtc7DSig+pdzuS2DMurcjuYRid+yPFSthc0jITzMaghh19pLf3m0nxRtGUSxhm+zW9Q7Nrafib4Uswvs9z4rCMZrKAN+8hejyObWyHm0qRoZ2WvMZ5FHayBoyucB8DlLJiHVmizcaLaTIX27PBlzfNQRbN9vgZK0eOqfCXyPkja9mvd4JrI3k72WNP8Aak7DMika+BzwfEbk0SAC5Gke9mUhDZGNY+/AuWaR8jLZrWmTiFmybU3IzJuOXjypRyTxCjhn+C9Is1Lhx82q8E4ax5SonhmmHnjA30+NRyvrtxhzv9M/yTHZuDx+JdscVZ5BGXJpklrm1Px0TD2tp9CvSXEWyGU/sFB8pGsbW/isfyWzc9ptsRvgHKTbRdoYcnxa60x20Iadq0nm0hFjtLyv+iG+2ub9E9r305pjPyU+HdOwN1Z+axH6eLzX+J60rbCl0IUWgR3JmjutyBySh7d4Kw5zNsctE51SBMOYaqRnsZtO1WvipnM7s1N/DaOHjLc7IZCz8SwrGMNxM18wg/N7p+qnkaO+7L5stRSNe81GD5QrNnZ7MsrkWox23UN/NNhcK2b6HK1MHV3BJ4VSw7nk0YQz5rHuNAFsgHNiixBGgmnrkRaEcc+VxA/a0U2HAcKiFjjnITsKy/Z5S4f6lKJvat8b/wD+ywpcNmZQtv4aQjjHflbm+9HlXoUUhsEv/A/cmQkMaz2haPiUeMw7v8QA+IQe0mmvZ9VkDhuaflanETBb8Nrwy6Joz1kgnaPxBbOYNyt2gdfeIBTnSRg28ftClFiz3fYudfxUs81/3b6PCc8ZszsPPmH3VeHc63aO+80oPhqs4HgUzJvjy/JSxh/ezA/dNJvZFW4+ZtbtydI7dkzFYuaZz27OMxV87UU0oobFxdxcni8SPAJ3f6j6jlPvb5rLl0XBDQ69RRXvLoeaxsXd5u7yU7dH1vbqojqK4rGTFjS1rbJbfyQ2JPajlFmt6iEdezzeIRayjqfktL/rDouz7wNFMbGRmY/6OTcr+6+/mnsiz+0cCfvEIiFjDVlvEA2iyJrLBcPIlXmqmuNe9mWKfKXdqKQDwKwbng5fbNvxRzN1c59edoS9qnOhzfNpT5YWy2WkOHIlRytksxyX90ncjPlOV2xq9WkKJjXUTho64FtK9dYnBZWSVl2jPllTpGZO25oUUWEk7rJgfPco8FFC4P7dp3osbsznAKWZpH9XxbR5lRPtg2skbncC3ii8AaneiQfeOvJbZhfWdubyRz3p+SaMRpq3fwHBOdLejm14otzizkd8gUGijnax58GosiY2w0t8iUZvamOyXcg4WmDLV7U+JKeNDllkB5b05+IYP0bJh900foo5s7TmhkYfEL/H/ZR7w6j6jloZGDxWIraWOP8AHqItDqK5rBQbWcODshbxT8wk/JN7IPgFiG2IXfJf9S/0f/JRYpsru7XmU800ktHmtrE6mmaO16NI52aFzAOYTsNLQIl7Q8E1h95jL40nQA1TIw7nSkhc5mV5zN5JzMjaDnCvvEITdjv5j8LjvT2YtpLoonNb4OUT3bJpkBLuKcW/Dm8KpSSQggF9fJCWL3S2yeDEYY5B2o2uQiiYS1rGtPK1nxLd0II/GmF7j7Rj2nztPZl1488hR2rZBJJhtOYdf5KWaMt0naPBSYsE5X+juj/EopIy52wj05ilOJ2suN455XN1XpWNic3PE1zByanY+c3T68gnSuk7zifNYTEPh7OmXfqn4+FnfdmPwtH81FiW4tp2cd18SGzzGOTsEbtaU5MUYdmzeDio52uizZm3yFlZn0SzKRSGIbQzEWeGZFwIJzdnmrY4Xm/8lmjBybQlzrqynfpmjwR7/W7reeSb+lb5pxzx/NNPqj3lgZMszCpRxU36F3ipXDYEe8wByfhsLtXdnW+CGHg3taT4hPxcMVxuc7TSstqPDYSe3Mzj8lFC2JtM7Ky6b7UzJ7uN48qUT5a9q265NRlqraaKzg6ahZGvG5pWzlaPZv05KdmJuw2P6pnp0btGpzZJO1Lhu1zajKwPyl58RyRf2csWQ8lLBK/vUfPVRxPH6KURnflI0U02IhAzjP4gaKCeZ+9gb8k17clHEAft0nYaKTWg8+QKEMLO6Wg/g1UkjwSPSWR/c5LDYoxDt4wObyolCbDYh15tedEFeiMD87HvLvvOWRp0eAfMJ2Fic2iG19EejsOT3j+8o9jCQ1hGZ/wJ8maTZ2L8lI3M+tuR4BFmLDsrXNPmpfS5C4MY0AH4qWzxuz7Qh380Di2UHQsd+Fy/6hkd28OQU3Fwyf8Abu+qn7M9refl1BO3dbluKw7+x81x9VnFR6fIrDu2uGHNT6uDfFHvY8/daPyTy3NV8Bf0THg8W2nta7exp+aycmn5Uo5XHSSM0d3gpMK5zswxJjPBtblh9owHbSCTxy0rvcrrerF6qm+CpEc1W5ZQnRMd3gD5rZMrgtjHweB5GkG6d7/yQiIO8osf8RHyUeozNZGfIIPy37Mt8k4xv0fu5FSxQTVnA03a0h0fhi7T/wD2oo2w6RgVyWUfDSftw6ocuX7zv5I7cVbGny4KzVmOuY3rMMtAV/FHCsebc8n9pR4UNIJaHV4p0Yc9vZPneq2bmPc/MXjgOKdLKW9mDtDeSaW23bWPL81I8NZ3XOvUG71UmFkcRlBs8xSmaWRN2gF1RWFNt8OCPquRUW6k5u7ytD1GcUO87zXRMu9hTm/1geCxfZw7hzT7dGyuLVUtEGKM38kGuy92vAPWd3dIl86zJzJCNCP4KVpc7tZweYFhQ5c2slkaWsQ4NadjbpPuqPES++Xt5EKGZrrsyU0d5SvmP93nY4feTJsVF+mh2jecZtMx0bjVPb5tTJQ9ltJIVouIUsMcn6RoKGCw5H6IfVNw8LDbGhqa1pbq0fwUmGlBuDEkDk4r0UXYlkY7zCayZrv7wXeDmq8Q11HZubwNrav0a6AHkbC1P/anzDgnSCIOOSRgv4wU3EPa4DtPHkEyWZznZoS1o96rU884kc3DU6uB3qPF4zaU+EfMUs+626rPHxIHmmCMjsZfkUQL3vHk5ZSe03EPH5hZJvdmafkj6SHX2C2rURk2rRJGAOYUjZPcs+RpSg4mPK+OvEjUoQ7KPUVrQR6z1O6uj8Jtu245Ym7yulY2tZC5mg7vqs4r/Ed8lhiYsQEO/m5rpI00BRjaYasxbvFp00+EcWE3+LVQY6V/+Hm8l6SWi3wODeabT9YyD4LaMaTmdlI5rNG7eY3fRPELu9s/qF6JA7dr5OtRwMYAK/a4qWBshs2EMM8HsTvCG1oW4H5KncaTpYwadIwHlaOIiBHtG8tECHd3VMNuy6D+KLRqaUj4s2rng+FoOjLgfSLvg5f/xAAiEAEBAQADAAIDAQEBAQAAAAABABEQITEgQTBRYUBxgVD/2gAIAQEAAQoh/AfEOMUH3BfLLE39M/3L9wngykCa+l1RK5w1+70K+2hwxk8LLVnxd5BMwkcD8TEUH23i3XiNPVp8VkN7/LHj7EYYLF9cF8bo2t6kbZcs6IwEsuV5B2BPeIhCSk07SyHqIyyX6tYs2AN7/sTwGMwIuYU2wD+FPpCPSHher8WcZwcqOnFfE7jMBw18QX3ItbCd2oJ4o4ti51hIrH4rfu/op6bXjfgRX23WcnV/53+WxEDGB8OMssss/KglCeMJ7YXU/wBHIiM+3iLr/gzHOWf7hZ/mZZZZ+LLLP9efnz82Wf5ss5yz5Z88ss/Jllln/wATLPz5ZZZ/9bLPyegfQB9wwQ3N/wB+fHLLLPz5988QmObtn/Jllllllllllk/4st/p7Y+oXcZd/rjTHDK/V+PLLLLOGcBo/Zt/u08zL6lHpZZZwH+z7Bsss4z8g2/cgkcHnDFl9wE74cEq/PPxlra/dr92v3K/fxPBGoo4Ej/C/Q5+rq/8uo/YscJK/VuG2uD+ML7g/qwIbRAPuOSY15yzjLLLPnnGWWWfheuJXi4pQZEcIvEi/wAN4CCHINpf0NH6A4GN8VP4s+Gc5Ew/c5s5JknjJ/bcs+rPkwUkXXlj3gR8kjUxMaRJ8B5Nfz5ZZZZ8yH9nr7l+O222vORf+oJXf+R/Ipm5gCbwyyyyyyyz8OWW88ZAfVWXvIS56oAzeG4tnqtrPtpKmifdY1gY8C9KbQNBDgDh1tHHBJpFi/RH0+LGn5giQUsYcodLcD6lOAnX7vZaIIvODzgkamwZk/1X6LPtn1tNJtEPySyC8vHz4NXhPx/LLLOAWQ55Bk5kED495Hna0ffwGsinU7lnsQNZnZbrhy20+csgs4xZ/nOd5e05N+KS5L4vBtrRuDfZh82kHOWcMss5z5b/AIcs5345xlllllqs4zdOFjEKIh7nXNwhX1hZZZ89/BnGfgDgCw5WZvxyyyz44EWzMnZwgAGxiWAtEMrFTHyBh8dtt/FtvxyPhtvJvOWfiyyDilNu3RGBS2EI8XfVjVozRaXSreX82cZxllnyZZZZ82Msss5MsgnVR6vC0OjsQxiwziA6yx3MjvDxs/POMjlZZZZZZZHz2G2234Z8gZ8BTckBUE4gF3eUtY3uGQ03LakRfFlnyBllkc5+HflllllnGWfHbbeaEidFS7rg/ScQHHqbEbJE36DicPJNlllnGWWWWWWWWfkCyyODLPjtvJttvwbI0Jsn3bJyUiS6vjCZLdkpdTWkCZFOIyyyyz8+cMjgD5bbbbbb8csmNupbFGeyDhOptMlkxT4tNK6RVez21iDgjUmoLP8ABnx3jbeG2/M+BBJlFDx4HqYF2YRpQuT+odE5VlMHAfY4ThhxEsSu1owpG9NPy7bbbbbbxttvG28b+AI0BEzD1NiSJDABHDSFhSMp6KSO3hHReCHZu9sAg3HCOa14Em/w7bb/AIECB6eG8ngheAWBIbsZwpAYAH3YXJe0dxCuFi1twuQzUFQX7D8e2222/nI4DXLNmOW7ScR0WYvrwFLz27bzDBbtsSTMhAfF+sYgNYsAkubqH4N/xnyIaduTN5klMs7F2DkkkO7rmc6BbNKPWCLW0MzPE1JJWtzO4edtttttt/zkMRecHjZ+Dta7DDhlkkl2tPdMU9bdSdbepD1xLlwKnZpdL2+H/OfJxpEqx3I6JLwn2WORksFwHXOQ4JxJGeSAa2wyvRcHQmrHX/wYLyvJcZXmg7bMs5eO+fmfJlh4T3JEF5dG37brj6+IBscBPw38Rx3+nu7+e8DbZe3Z2yw3YrH4YvMHDN5tdDImoNxY7QP2jgO3BuuPlNfBbL/CRZVnP6Kw1nxoVEGElpn72Pbkyd7JmLQovY+Gw3Xq8xyeKyx9eGkMo/BEhBiJZCcIm8KBa/val7Z5KS9eAf28aCeGI46l+cAlZ9E/duZ7m/oU/c0esTPUIefYVOjMRTPOu+HmB8dzUt7vEc3jl40o+CxzhAsjEZAvvosXjS2Rs9YMdddZJLTsD1UEQnfATt9gHrc/UNMtPtzA8LYtR0ki/bB5Qx66Ht2fqjZ4wnIvAboCcaD1N0HIX3bvD2I+H3wduIfFAEAgivAllC+pRQA08zDAp9siy2Er/lofSwiRrDtV75HvmM9k7DVEH6g8C/EssGFUhBs9GDjprxUjWmOTsN+9GYh9dEHVs2TBxgz4+odEIPiH3OdCIY7Xcjs5z2JTehbAWhGOlhvARlMhqZLMffrCRPIfpKDxF9F9lB9DvUbJS/Yb9Bf9IM/oF1UHDwj+l6PdegDJuTtgd6cNn4LB8Nx1sOH4jv0FVUKJM0jveHqnvAxhjWCdYfcoQPzsYUbLJAIN1HsRMSdzT9RhPqGwDPIr+t/5CD7z1V3dV7ca2t4Mb/xxbj2i+msre/g/NvBw2yQ6PlvuWfG8wJbjB2ocriHKATDRoZe+JjwQnqcQpY/k7Z7Q/pL9X9ED9kPTD2HWARQkmiHbFF2zLWo5MXIgEmn4gTLPhlf6fPFaRHhu+1dCNC3HrQhGI4ZIekR9FaLErk99yjV9lLqquyMHujaxuIrQObPT3GleDqdZtwdS59RW5DsRr00sTo9z2Dm9nktk8H8hvi7ZXI8n4fBXKceT8cbobIw0XDnbeKUxRjqB6IQKWJh3x29a/rPAPrjwtJkMQCYLfLacHG07kIaQYfaQxpD6y67Q9mwCfbvbkb6n4O0ug7M+DAwwMn3eeHj7l1xnYld/MFJkWaazlxKFBXgHTFkIwLKF+h2pHcpnEEdZ3S37z6pVOMgH221CBjYfpPCT47nH2yMPfJR5ATCBEKokkXXv4nQL7dfAGh4E9bxPwcCHhPuAvoATXbjk7+4lx2hxl7JMJRpjvaR0hgbjiN+dIRrZhq1CANEY9SnPoLWrPEbR+r+tqNu/dihk30zxY6ZQRPZf9+AKwmcpE28vUKc8u/fB+KaZkhNjEiwFWTeD3w7EaIjzUgHIUnTH2qh7POW7bIkH0ke1pwPQhojMQae6f1WPcObI0afK6MxnqIOZpYHLn3T9BnNZ7nkulx/Vm0TgvFh1oBdSenH1w98QGsTAIa8BGdDQQ7tBPq4i3h/Cp4OTpSd0yDxdpkCFzrjHR3WB7L3V7bWFWCpLy5hE79AdQ/qNDBj5IULegWpvRxr9TPPRoT5CbDnFY4Br0uhkc4vFdt2WZiHfBRQtt2EJryn9nEHJDO7EzeC+2J9o/ZBYhnqbEUwz8ihNiTw9wpe09mIJY6a6ZkVQmt7yktw/QxdmeBe41dTwlXjvwZG2JMr8b94CMgRvrguR4zs2DV7n2oTVjgPGxLuMqOlu2S+9t6sL6r3NOMUE9pxfHpmlt39CEGQ+qQ50HqNL1Y4um2warPWQRzeDuU3HTqE18NtjsA2ZY8fBfUO22tdohWejSwDyaT9L1KOPFkinWLerf3pQkPgx9MvoXyP7hGQasqhvexADR8+BXcp9FQdGR1siWguCnUSHhngYi1i/IHJItbw/EZoUYbxPu7jDOBbISalo0qwlY7SPs4wWjvCBQgwMsHgKw63W4z+x02TLNkHl6/vvto0MxNDTcsMOoh7OWImBpJ2mZQK1O44dztvJ5UNzYy+7qCKWcJAAuNbOE448zvPApk+/GC4mm/vp7YM4DaiDRhxj3JPCN5qpMPIXeZgWO8BnLD0r0aoR16gQJmD7eo4LxEuUu7s4kP6kXCDxKzyM0eC6LXXc/EG0UR2dkEN44rg8nZsno4mEve+nwE2NzzAkccyUtgDVrrIZkJUfylQa2iAMvRe90RBtoEm9CSDdpTMlqAGE9IOgmvogZw6oGv8AFkuwEl3GYb3jz9ny2ScUNl9HwjjZbcG74wFYapkMNZIabLYiDg64EOgO2ARQNh3bD1CwChjS9IPE6Qv0byoihskdu6fH6rp2oeoP0wEMT2Mpjt74sGN8lwhPcbwkocGnCESOrmwuJPhddRC2Asr3a0uU8wA4YJeULCdKfSiHtpthLBXbL160+4Q6tBA9ypFhtsDcj8Xifx4tBB1xARgwcWhmqJT3fTipfSPqtHyRmQVNfeps+PoKbwe8+ZHfU9XDwzxYdCNwzgu+IhAjLLiJbIp4KiIpZ1gmY2COL20A+xHUSaiexaV19CqkmAT9xkmMyM4fqPp3/wAb61f3jGad0PKYX0rv3lj1g51Abb214T7acA4Xve2bBPXvgE0W8LJsi7fgVBMCCBAXiHqBYM27v6B5k74SC7S5kKF1igAT7kZRI10C2vaQmDb2eyRoSDipM/s+NoEVctHLsXREeza+5jtoHON9O2X2B0T6Y8oxTd4kkL5GacHmzuPV6+HkhANy4xELDnD8A5uOOUD1D3d4Imxa6hqjNurkJfTfGDLMTjBAHZ2GpzV6z83lpGdsFOHYDlg49SdAybnU681l3iWgFcD1NXRReHb6PR/d+nb4rCaTVAw/XvqFnalab20k64ZMJt8fer1EaaF+7N1THrnujHsJkJWKdjjHu2LZDAx9l8sRsetA8MywsvZzb0vw7RntDXJ7e2edoPLAU7GmtLw5Ad6zDqk02pAVG08AND1PXZXoO36ENGNcyq9AL0xU+pIwwkPQTN5TbNj6tRYXhSmxlQcjLDC7tgJZE3s9mTARVRNPryc3h/uz9N+l5PTsJ1HnV77kD2seiPHewET8gNNulQNJgosL6xpZofLRMcgq1AigHI4K9an1KUB2+m9IYwGydCM4GljSrDiSTYfcv6ooHDOD2lEkIsd7mbdI/pwo9RpQnc73z+M0PSYCZNYELG7c7eg950exvPc7PpUiE0AVo03PmM4muApYBaK5cCy6d3cLsIkhap4yy1CjJjNVF2SQ+kmxz64NooUw8M1ECWScB3VnHqGsSlKvCdJfpg4zig4XM4xeyM/cgtgeguwUGrsO/H6Z8GTr73enuXCb6JfqONNZRRNTHU0BJjvjwpbwZol4dbfaLaRCjxpm+5cKmkjsFG77G3j2OfvEP4oxlhyHQRZM3+X/AJ8XXgJafSbcNdS9dwUfU7p6Q9knsbJf+tzNwI6u3Qx9tlOkZ+hj5jg9UadxFcOzx7JZUBWtQYoY+1IWhHQniYLkFKE7jNnvGC+1wgOvLiJEQ0uk4D2C3J0RvlmQLI507+Ag3AAOJnbaKlwZ+MyR1AYvuA308RuSXQde0Ojj6joxqYrbJqODTegAxQOUd6rmUYzJk87BE9euBCDJQunl3zKZVWM+SWIGt+8E8bdOhIgJY23S3Xnl3wXqBaMeRPMOM1EyyB41cKDpMajhwHbdMlkUAzkRTMhie9zgBasYdHxgEEg8QQ9rlECx4eCKDinoIlSMshTN49SqDXAr0JroS4cCGtS+ufuZ4d4ZbeJrmZ9sS94Nv/d7t9L98Rjau2WZ3VR6Q1oarKR65jtmMcOPHTviMFJegcYF3aQxxiRcjiMD/f3Tqj0m5WinjDJAHGUkGapGUKjuxMvM3VA7XZ1CFPmUCpcgLww4YsGMzRuhXU4KApC2Hjd/eEcW3WNw6B4Ium0B6CIoumDkGyIDEzIDEcmHRZhwaicKyP3/AMvC6JILyPBTKRTQeBSqzUdWyaeNF2tkhIuPNqICGYBhyxXMNHIZEEdsp6E8PG70QyIeSI4jscPFmkQVoIsYCzNMl3CCSmNrWYmgbCxNnF5XBBzSyLUpCQZ+ViiiF76xyD5pEodEhbxauB8PA6wTm5jqNFBhj3mx4KIMlM134QnHHhmcHHxjzguXvtuXjuO0JLvUXk5PtJ2h1Ct2EK5IjKdkT9sWSD3OxczGE61C7g31cUCooFUvQaXBkaDPGbGLZpYYNbOB1XlRl5o8dQrougaHqvQEXwbAhopSJTSvYIZM9yGi7HK2luycgMXTqeH78K4VuM8vSU/TWa21NawTY8aMBIZQPSI4suN5mQxnMwz67AY8qcnlhIFgHKAkBtmzkTpvr3Qgdpm5blO2AQlJeYVMMQbMlHG+HaIY2zdXChoWxnLMdxdxW/W8lnbZHFXY5Xs39OLnQF7+BR7qYmbKxg4RMTDQS0LpWCbeqRGRYtuRBYrpZvrhJQoJTLxg45VgVyIKVw8IsFQ9AgbE1jw407yOxngJsm+8dxb7c9XZmeB7tjDCmdxchQOp7eyjuetcBoBcMfQ4aLcCP1E8dYr9jtMFxu8u/YvZIYGJQQIBao1HiT8AZ2YQdIQ6uKiS2tQZ1wLZNBwBQOdYiVkJ3CEDv7Bl0npl5tFZGuDM3i9Bu5lpTmDPHBN59jOsakAT2CSqtQps5qkOllQrIWbx0iPt3Y6SmkwQovvDd5iNM+GJElgQhOJAUiNNPcSody1kq0U6IHHa6C4QguSrhocLe+bxTS3ssQomeMvA47jxv0ngvajpZbWUOTpxS9/OklNJ4XzE5JK9jj7cck7YHTmFIXE2Vf/EACsQAAIBAgUDBAMBAQEBAAAAAAABESExQVFhcYEQkaEgMLHB0eHwUEDxgP/aAAgBAQALPyH/AIY9cEExib9UbemHj7FRPX2XuIYQ1vA9n/2yJvFDMnElYdF6IyE+m4nMSkk4B6+yjt0f+FmE/fWo/Zj/AAn/APIi3f8AsvT/AGl/3P2F/wBb/wC96CfkdFhA2nF59hf6C3bDuJRdcmZuTszKonkoIJQaqCEnb/VTj9HoyFGiFopjYZBm8qwrs0NP/ScsMxtl+tVvH2StLlbGKYEwL/lW6nadgty/jUq4Rbj7CZtRDBwRmkLdxwwex9oe4H8ZPpezvs5RfZz+Ue35xMW5JcpjrNk18nj8i5sl9j6/xIzfyGLu+x/zU7II1T9ljEbLb2GUYXFCm6HXyfzY/mwzspS9lBlk/gXJ99JwUj+MBbO/oXJ9jqhXcxNRNvpH82DH/GQ/5oLg/lD4B/djf9BvP5s7RfxkLgdp2m7pKkWefdaHKQxoNZBqKX3ZHqwBUXrggeLIJEqGY9SP58CZMeVfgTXubn2FjKmv+6Gkoj2ZKqy9mqkpT/Si7nXoptK6oT0c4lYCl0KP9KY29GvzA2I7FRORGDzILdEHPFNz2JblaEXnhf6UtW7DyMjacGIHYUo6rZJLAu8hQyYmmf8ApNHDVK/mY2Rrt5lzZ4kXLkeg5KXSqf8ARiq1/dR0EliQp+ZmZqX66LMbW0I6QlMjOr/0OM7vAvScpEoGrZWJcqiI61IkGyTIIdqCnzA77VU+c/8AOeKzDXIuy6aYLpDYhIt6LELw8hJRLZWabZlUtkLcM0Z/5aLshG09mJJKWicFiCU4KI+5Xqi3WqgihkB4RUca/wAyNIasxq1iqHSe4mnU0eGaMV/kOWzf+BsJstl1yG7GYBqh+XVotZ9UEkq6syL3sIgMmKHTWX8dKWrYayYbkP8AxV0xXTNjEtvH0KuJ1VRu7VF+jK4HB4u/R9ELkqsWwr4djGt4FQT+yXyVVKr61E05WNv8NJuvXUG/sv1jI7BaLq2IQ/i42KB0/JepB+5dX5RESbJRw9/kb3/P+G14Cp65OEJTT2Ll3hUX33IoyQ2KctETBQfFvwQ2OU0P9T4RcntMP8FPkexibY+zT4i53UkrkzKl8xLHA6rz4Kl7/wDk6bMsK7/1UZmawYhSbzl/kd1GSS8llvP/AAWjlif0V9iu5t7F6FC8Ol5ENAuLRkFIMNQVf2ZPZczThJRKeRKEQv8A98qd4G3iU9ifIz7E+QKJVtDpSqfHYgW5S/2KBlZYcELQcydiMoOrFLyXmSnEP+9cAu/j0U9VGvr7DlKZxIpdCw6nMrLG5Im8ZjhDJvvmNIuAgo2/J+B0Yh6vkl2ttv8AvjkH+vaq/b69hOfyMVnErrKoS6QbKi3oxInxJI94sUqwtaE+gQiTX/h7jvO87ujudzv1fBPBGULjctv0W9UL2BfiX5P/AF1rXoVPhi47shMnrVTvBOxW4krmhdC46Owul3Hcdx2Z2Z2fXudzYc9J6T6FuRo+iST6b+rMr67z3RfRMT3klkpdiqQ7mTyC30Q3nSX2R3uHj5IKIQhHPVZBNO/u15RBNmdocNazRnYSzmR6yPIROgSubCV3kPcS0Xoa2NlK6FuhtRB5SPZdDzkezHYwwueB9xbuMJEKL039dvW0FuzaUx8lJuKlJz5Ik2LmJXZk+CUr5Juhd9QVcpklHwWJVvVTuxVNPevSbIaMTBXmeyHzt5tR0qIYtmSsxvNlWKNkf4I3I2OEjYjYJrJneTYOc0LUQ4MiooG14sh5qhPOQ8SbNEPNQJNZoTkyr4FpCgWgtW338eqPVUsvWx2Skbr2UxPwJ0KzWDsN1N5L/wCeSV5RAi5JkjLpNRnM+w47ioVoaqDumJ5NCaNi0GHwdkhJ43GWAnjIuED2UjHgjVGdpyORcHYewgjU5IG4alooq/5eq/qqvsaeDJrVJDq+P8hqIV7huxi/RRgpvgQsl/F6VtSX7JdtRTIdm8nkLdJrBvZnISeDSfWQ7jN7DbDfRkMYoLeERjSDQ2d4e41Ma1Yk7zj1pD1X9UJ5fsSxLAYZfzXhDkSlzDx+BUorlUhS6oh/BKP1PTOS1jh4G9LJpuv9mVdhDDalkHcaO8glquj1DWaqSdiMzK0TpUnUe6ExsQ1uYvmb1dNpmFnkJvhgsv8AkE3Jyp+hqKoVLolvx6IUrw3khC0CKCc+hYDtJF9m/ClkFlvwhStDZOlzkb2+xaLBvBM+jeYGQblMjQbBGlSeg+yHuLYapROrJ2key6IWY9bDBDy+PXFVOHqlqe/sNp+WIdh5PyKGySvwKSwO2YlNKVHNKeQ1EmOT5FPn0sGMG/SROXVRVsUQVVBTIcGvg4vFo6C1NrC2Y28x6DOETOgh9o/sYSsxbExodyXRwkb3BshcEPUmEbjg1Ecem0R7EHDhBytaSxXCFmZDQ7cxk0sRvTJCoO8dW/8A7B01jCylC7DDZ8C5mDKoSVVVU0BbzXwLFAmgaamRhapVhnaMUQsGDZJBooLuPdiOx2GzOWimSNxsxCq5oVspssvVLyeCFRK8enA3dPz7MEruJxjjUNwkjWw6Uw6DpbBMQmlo6VFXihqC8r0KV2RkJGA30sbiqeQ3oEO0LFuCt2qNv7E0p5kjgyGNBJuVBk6C3ZshbhiOhIKEcifVUFdLJqE7PTMHCezQ8wgqzblSn+hrUMmsBNpSiDkIktkkNVVNRyQKLW+fQ7IdauDpro5EtEaghm6NamqgbgyMbkbkE2KQY41o1cpdDEDe0D5hHyRrIxTE1OXqkonacxcjq8vTNTkn2FH8T9juCG4GisEwuOk1d9OlhjbS6Y9EkJBDmATeT2FDJuDVSfRrCaVE9BzeRMkyMIwEWH8zRATJwbKjd0bPuTkPiaBok3SbZOsxFi3CZCJhLT1VSUYE5j1b+iXQp+zVxCiyHcW8yNPJGSV8JJI27I0VYCaGRrpQPJx9EpyfkhJrz13IbSxuhsEG6CByxM3AjYLcPQGlR2EN0KgJCGYdOERS5EqRwo5HlExqDaK48DTj2JNppZp6peFmNcJ6R3N36IrcVKb6R64rLOEPmCFbcoLzaQaQbOlKkk2VPR2BWrA2G6jJjEJZk5M4FQ9WJVaYsziMlUTWweykb26eVHrB3EhLjFUQcHmzKcVHrAo08E7Qmo1JjF/gXKmbjjU3A16k9bGCH0n7PRES3ZRtvZu/n+BEkJllQTCG7dlHcg/b3KJZW1j+RL516VLu8fp+mFUbaIZEb0GNqIa1Q/olSjG8hmpykbcQ9Q4VOxvBk0HNLifFgPCo2roib4FBIGUDnNNPSlI85JTwcyJOsEODScVET11x9H/kEpsvZaHBzblP8GxFgiBlOORklkurGTXBaU5XXWU3mMhaFkTC3UblcTZO4lorVsiejalDNW4qmM8hOckmQpO6CHgqHfok2JI0NalNIGkqlMrRjTbmhVc8BJcNFV+UvVdySgoRQyGmVUl/c+rak5IokKr2aOu8fkSqq8ISagUHAumdvIfScTFM5/Ym7ZqOtBEziY72t9kzMpjFsoqG1RuDMOjWckHSSrFk6I1VHFZfklU5muOI3orKCadhkbk6inKhGRQbeJTUtmmQqrVVSLsg/g09Vj2r4/Q0DwJsSm6+YW+ySLezMJN0xG6hu6+GQqw7pkOgoMG1y6zIqUOtC7WK+/RNDGATPgy+BLFYzCarM1Y6XxKOSrMKrzGzovZqDSS7kNToUmSRKtMi8VdSqCR7HJ3INhBcMgphmL0WAiqovXFtmBkMixEh9IJff1rbVkWPZalfij5aIsZMoqhK/kpGvWhVtxPzdZFGSHEUkW6N8B4NDkIqQIcFI2Qdz0zkwMhVk1KHDO0lcA2gheZDbCErihDXky6wQEH8rC1FX/DIqs06mE5yJKFDoho7Vt1mDjE4Ahk26Ut7EzaLknJ1HQlmZDJIz9GpRgj83WekpocMRZJkbVY0xEbTIUsKkG7CPKG0hYCdEqqG8YFHcjKSHMaiqSx0ZuEI8wzlSFVGS8VQwIqWsjbS28fQ0naqarAi3fgI3/RKzQNoNaaivX+p6KVXSfYrQsZVbUKTXian5Y2/vx6G9IOhLxGREl2YsjVRbm4id3mJnEtiM1ZCHdIWJLpSpRmKF9O2Y3DgkoJSgsQq0TDRMSpVTdgLDUeTRgg29UJY9X0u+uj6yi730l4ZkVdWuSXXuN6mzP7LXBCisop8i6TVdX2H/ILFq0+SzlkYlt4lR9ybl1mvJyy0URCCPFYClSRIvMqiWxvMcYNWFEuaoaVabgjQliuiRxRTkeZSDwuUzSS4TJb6JcWTgqkky6JnJ2Ib+XS8+vJYRNWszlP37cMi40ttw9hb5oY/+1mf1whlkkQqRYZMSnrUhZngaXGoo8G2DAWDojSgcLdJPQHriGrpdRWMfA0c6izimIbybHiSH5NWiWIWeRs6IxBNOurxJyNz6Lgl/FdIZS2qWp0TRn4PyaMV7Mho/Bf2IkdZFIro9YxEyoJKfVkt3Fsw8xySwyEKkpYonkDjNI2wTql0DgZZsnwG1L4f5Hs49IsS0S/PT/FgVzDV04oQXUUjcGJTSmZwkyR8ElhMcoTdm6lRvYSSiF0KCdelPukZhIbXIxHlT0JLRRC3FeWZhNvRvY20uxxQZlCbidSRXH0Wk/o7lKFWnI00itCgnsNdGbimkvMfmO4yigpoprNpJlWpMw58mAnKFsRSjAIOFKSdh1UpJH9ilRO4tWZck1C1VrFLUJ/I4FIT9E4rpJDWD+0JtDLiTqbhDvyOBRhoKFLbBYc+hx0NO+KZ2BvqbKnoaaelX9q/RMr4NiWLEVzqPy2PBVG932E2/wAD0gyKuzt05dypOJHBoZi2x26rASwFD4qYZanyQQ/yJHsmtODeDQYb0TkdHA5LlVgUCkcc3oOHHRq1qWW42pXLwM10ZpmZY3yVQRxSLD2JrkeZgl0bZE0GeFnLi41dVstR4yxi3pX2SwZmvTCXpYd5aX5JSSe8D0wJ4k2qaGINLzCCXGbNDKDmwepOjoQvgTiLkpXsP5IOSl0iqzNMzTUd+Yqt+wZVRPNiOkwfhjqiUh8Ma8p8itR8lgM1CrnojIbcVT/Y4KJ5rWcdS+QUNZuPCFThvdS7q5F1qovslqXcEiXg2HIoL/ByNYUSKazZevkT/wCAk8Rr11eKwEm0+qkpB3GlZTjwQWIoTDFUScDuUf0KXMzQxW7jSjpSRLcUuZuQqXJbIcWRZihKbIbhPGcitQnqS+zFoUM7lsawytI8th70WLF0YmFMbDyS3MBQ5Mg1UnLqG0pYyEndztszCqfI5hq0/FRqhL8RBMUbdxCUkaUJUmJ/sjElROCEd5mrH2IHG7BiT9UEKUFWi4IhNKrKllWjWQzQyRDLwOZDceWJbElbUFdeHy8iikNWNxqrVu2NCbaVaMo7XMbylCvTMotGypDxaHqK8NjsD/I4dVeCksMsTQoqy6MynIlbEJzeQRWKSLiT8mhFeQ82NStSoPnAZXKkhGoacuBsvWdk+khLVjwqlg1m09yCi9IlOkQJu3/YldjuMeCURcu8RgIyJ2J4Sg5IULyylPSkPpSr9ciWQzJjcJafkSe2TCyvqTSo70f0Fwm8KjrV7D721M/vUZSnOTTMlpzDmuA6hFVYbRExX/UFBKJlrKOLk1EJshi6jlmSZ5Ziq6Nu7mAStav+SNaNNCTdDmlzFUVfKw1HWVx7MGOpVUb1EGi/ilx4K6kNhjt3QnJCyG2+ViOFKjlVCdohDRPaPkZImjyYol/4JTRiviTYPvGBaxnEk2oTXEvJqgW9J+RCyvtYVC2fKGYP9DRX8EkuIpvWRvFU5c6F/THSSlTkUei1xvQouRFmoKoqplWIvEq1E+5KblZkmMqhOAhEhbjMbJc81KjboaelClvBOxMSwXSWiWnfQpmFDFSlxqHkERIrNqmuaT+iVTKnvLEqUDfDEMpsN1bP5kZITVSyl4YirHWsXYbXK6/aZFE2g6sZxRQpVLBpKpcJPgzwzKIUJezJsdF3HanryUFJxFx+L5EqhIEsW13I7n9DTLfhkNyMZwE3MtyXI3NCldxFzLvgYijS7jMlWNcRNk0/BBSRfKGUWFQz9MEFBLwZnpqqrwdPsmbM+hNDv3FV8l1NsxolOP4JOjU+Liubf9SZynb7LaEJsumhCywV0uJqQEppUraSO5jnehYwN0sq4aFeBKYQWU3Z3HG6qn0mRWzc24+X3RRJDdVixIilvHXSpXGoiXKlLfM5E3KhcUvoWUqQQNog9TJI1kcoviPkZNsCvLLyhF3XSwqgXYiHpI1m6EsRuCXhNArzR9CJVbt+gqUuz+PBVSg2dxM2mfwLSkeN0aNCLBpS1kifwVXpgkv1j0eUsUQ6mmHjpaDtIKjNTVItNyUcGbA+xwrqLGyVPwP3OzFKHZ6NYGsOE/gQobM42Q7xKguUmyrgfRXMAtrI38UFbn0OTewpeR3Ik1UzYpRLmgRW+gWtbffgsQ5DbsktRImqIQdmU6NEk5281YqTmGlyYSqpPbMbvV+R5N4WNg5kfkGJF2PDK4wsKrL38CbryVuQVUwMtkgxhNTLysio/PsRAlOPVAn8xZR3+Bwmhc2MoZQHNqRJXE3Anmn0TRKQNXdQbQNWYgb+iCurSUcCVYnlGpqewlkOu5qaL5MkyBqsVPz9DxiAsAJ8DxD6sjNUpkfCG8oKMXUYqpMnVr3El3Kafge7bbUjusNY6rEdgrE3buQ0qqP0b7+ScKGoFTMFcXJVZ7CPOIWZQqZXETwakZRQR7RJpYjIvki7IRKz/JWjv7DlSEU+pSowqLk0dxdEBMT5ROM/oNoWEk6M6bmJvPSWYLfwPGd25nWGzz2gQ5SKGuSvio+CHTt4HLNXFRiihODA/IqI1LlHHdEBJz94sOsRKlxST6jaoL+Ggnd/DuKlS4qYs1atGSA/sbmUDus9ikavcoVuylGlh25qkm8WnIhXLU5hIKKeUxqxkawibkFT7MChWAT3gvEm1UVKAWLFJmniEmRrko/0UXrsJl6qqBTQqpQy2jQrOp7kMyhiMWZVTyJpA24li6vsM0VpMi0dx8FQfBtCwMpHXROlRJUSpHyOal891JLsYtcUaV+ayfwxQ79gRLOvyipVT1Qk4JDTUxGCezRNtmReJt7oVxefEK3FnkVZckrURqyJXgWCE/sKkxb5RJFGObi3YaVrYtMJGbiRVIvKnBQG4I+xYHJnio1JnyiZhQt+RRPFvYUI9b9hBEsUgiZrHE5CnFR8FV1VI3imE0Ml5DnQh8jJULcYkS7TAuOjWxyi2ZqRMjiD+azHSoWhsQWaUJIZB5CZGkiAtYqTECaYlSf0/hJXmqMg5PYmqtJoStUXcXyUctWgKVZB2AT8jY/gR2kuT8GCaN9P9Youy9ipVE9X/hFKopJRkpXZmJRzHWLE7002kbdshEYhIziVqiZROYewzbaWGzMgG5ambGQ8VTiwSIXaPgbnBxtKjWaUl2H4ynIyjU1rQYklGzaYyZK5wkoqKTcVQleD+xMHEBZ/odCdFqaqK1GoTOyz+iDBUtEOVKVEs0ySurLsI8kHYIVwBEtNyxTSYVzoymJNOtrvAW6xU4wETrcLIkQewtHsPRZl5IQqVldem5/46QiK3GThRjAmCSG6H0sRdGhcjqhSWqYJRdsaBJ1on5HnYKKtKu4iVnUkquhrySYMKbE27kiO+BBSluJV0vkvUCDIk//EACAQAQEBAQEBAAMBAQEBAAAAAAEAERAhMSBBUWFxgTD/2gAIAQEAAQoQ/HLIPZYfLf3GJD93y2XCWLFEuwMJ0RUzCWcJpxs/y+DBw58hNWsCpsQh/kB8Wwg8hChQ9Zk/SzbJUdjclh8czmQe2EJcLZbOZZxhmCf1/d7DdkHaqHs/HUMYdPvXi8ImG8PWAiI2ToA6L9x+VsoAb0E8LNBcQ0epuws8UADy8MkUwJtRLqWJX0DHUsGxAoAGI8B+kJqDEpeAvJiQTDP5eyO/bLIsYH93h22DDxGTgFDcDuR87kFr92cBeIbdsEgMDOnxvrJ/qX4kPAdGlt6vls4oMAhKQurHIMNAmjgXcl29hxLC1A+FLayn1bXBs20N2yQTcBIHHrS0mJMH6/8AnB+w7D6AR0HDLP8ALO5ZZ/LIMhxtJTUsWkDfGD2CEuTYE4thwzg2DCnVwwYRNHN8sgssssssssLOG3r+2e9Mssss6GdPzxiSPInu2w2sLEpHWfb2yPGz2wjz9d3mWWWcO5EOGPyyyyyIPjPxxgsLPxO5ZPnAssssg4CyCyyyCyyCyDLLGJlll5+r1PlljZZzLINhfuBBllkFlkHlnMsssssf5ZZZZlll/wCsfyyyOGWWQWcZkFkFlnBwz+2EZl9v/bO5ZZCv+4MTLLLILP5ZJ/lhHl7ZZzLILLLLLLLLLLLLILLLLGzj4ssgs7t7Z/tnMsg9/YuMRj9Wf5ZZBZ+OXzyCyyyyyyyCyyCyyzmWWcCxssssP5BZZZZZZZZZYWWWQQPTLLLI/DY3tgi3lw3qjgWWQWWWWWWNlllhZZ/n45zLLCyyyyCMFlmWWX+C10wILILLLOb+AS3gD4s5DDoR6+Wn5JHg9YLLGyywsLP8sssssssssss/+YCHDCw/ln+WWcxssssPzEx+mv2kf08FPLJ6vkEs/tmfI9iPrj7kFlllllkKP8cFz/bGfZpr5fADz8Uv0wQ/dVIOgT80DSGbZvP/ABb/AJZxllnMs7tsG/Jnwv2RA8DUsFsSfWx90UIH4m6RPmrfsELLIP8AbCz/AC1ZZ/lkWQe2Gc9svEF8Ut/uy+JZirL5bn2Jb5JmKYLaTy9fgMfo0/h/wfwNWa7DYn1J/S+AQ/8ABfmC+4I+4AYP3WH9RDxkA3JJ5K/ct9Wy3wBx/wBT/wBEDLLLLLImWrUK1+OQRB/kgazV3bciq2SGzFIrdttvG7afuAY4OGe4/wB4fUMA8tPhOfsfsbRfUVWyyyw7sQmyyyJlkatPsE8T/wATIPb6LA7CM2+J9bhlkH4V1EitvlvtbB/BpPPSyjwXJhsDjX8lrX/fYX+vv+2WWWSHcsiG4/zHIPwIOAf0+mRXzeZZHkL+u/7a/r/svtmw2R/gP3EfrgHgeWX/ALJBmrO0xoScHr8QJiyzi2w8zb/wN+bjppDJPigWQdhHCBF2BxlN4tv0JAwG2ztYRQnS1w1sTDaSM2dlzrYK+WcyKSvpHHsiWRoQEbzlErNi3eY2T6sVTUHgYiB60RuQfZjPlafj8JEySsZsaiKFX6dkG8iy1LjmeK+c7g+Ctmr9kdJH3tc5wOMceyMfySfauatolgkj8I4+Tq9cXBXcIp96CMcyYw4yYi/cTy/CjpaF84FqH/JeWkGP5Z/l8jnl5/Lybebx5tu/X8BljW0fbW2wTif8QGRp+qvH2yyC0EdyJPn4G6ZxJgMAMH9QMbIN+WrcT/iP8cZZf4sLJbbbX8lb29ve5Fh/I48I3/Q99IUz5LjOJV+2WQcZGvhwQniTHxyq8ELNkbiIhojUcG9I7sIvP5LLbxvd5lnGcYWXhAWR7BDAvosP5hGEWcPT7Z/ZMsgjXAIFlnM/yOxzFRDWyiVjhHtJL4AaMx0pQgBxZbf8ldNbbYfw23oJ+uewWoWMQ2v7HLUuV/s7nTE/DdiyDIODkzHGJpQo2bV/xptwxzmdiUzGrMfZvh5v5ba223tjEyJjEP8AEbiEfDgR+Am/tixYkz/V4v8AiIU/xH8clVQDqW6Iko+qKNbXh7WeIYGfBQgO/wCwL/sxTzbbIImEerW+bxHMpSEBAP1f+QcEIRhJx84YikHL7Y2oh/mMR/jguEBH+E84AbgK6WfDsA9CIwIRZhdckmy3/LfH+b/UQm/8/wC4/gvEWbxhZBZ0v3fEL/Oe3sDChRCCggWP5Yd3OHifXOzOsFkO4hCF5BtRmMgeFD3MiwGiYftixBs/nR6T/N/zf8cZZZ+GXtkFlhCYd/SOOIICw/zSxGYFjlqmHiZKXs3eblKVZE1eIibfZgQdXZ/NYerqiThhN8lxZ/lhYf8AxzgQ0h/YfEuL8ggLMttkWfxwdtjgGzxlEebqTg0apeuswyYAl5tpzM4JAsETUU+qgnfQgZ+HiyTPwbbbelkQbGOK55Zekr+2kzzx74Vtljh0WyzrU6VbX1eBl35kt40bH70smi2oNIGDCPRDoKSahU08ur0BAQZn5bYwWQWc23gEc98Ctt2pm2OBiFufLYj5BxFA/AMSFezkIW6sPZQ5hWkc3ltSZsSiIIDihn6Ah0ZWR1BT5mR4lkc2222222222FHPbbYbe7Dwcj5EQTeEqpjseGeEeZkFjzDXNsWbOzVp3mEADDKE0yaaYKVCARfAtp/AWxRg/WmTZZ+WljgEjjbbY6fiQeQQ84CQhxbXEvnIJ1srSwhuBeED4v0JqaqvgtNIqLNmzxDVPmWmxSFzAWB7mVWzze7xrb/ttv4EcPenA4ELPYIPII8Oaxi0vjeK9reZoTR8N+K+CPbSwLcS8lrLxTxdAPDMWz1HmMCHHKDGNJc6MxYscbbw4RF5H4Ex9iIhyGLShOZYZb5SGPuy9jPy8MgyWTacCMEcHtHXL/RlzF6NkzrOoUaJ4UGixRrk1ZSv6tttmCy/cW2lsZHCyyzz8FDw+Q5DGrOqBahhs2xRAFkbDgaDbSEDBtnnDew9eDt9/jhmHGwTpARiWNHmwLW8nxZ/E0v3w8tvvBh4O22ltttuxnBj2PkPBmOLezYgS9/KNJtvBp5aIh9XxETDSPjLNj0Jyzrei3iSSGzYJEep4FyqS+Lt9c22xbbLDDbDttsp9ghn8Ofw+/6LtsNsMCH3z8AlaxzoVLUSIPN209bJPSf0TaEsG3ycBeTk6rA+TS/eZRFXiZAcQQKOcReCDPK23mzbzfLekc2GOHs+ilReJsg6aBQQCMb/AG4+Igf21YaEcB7PuywvtpxDqN3wBw+ewaxpuT2I/CC+G+OMYMAGfbNgS6Dz6xyBYVwYs2kzRBX9siJFLIbhxfhkg29jdpluXciVJNL0FhTLD0j5OLENsaxQx2EpkqCD8skeBmeDCMY/0mwA8SyvTsDbfsgybI8jALwz4Rvl8BeQns31ggic9MROOABfKBSekCYlFBl0RomS8YxgPjgdK8gwZYh+RpEgkIUkoTGxPNRDIQjYq2aOPKUxDRcAwam0ujyjFKR4fAEthAVgmf2lstotn5BrtkHonjPRj4Rkvq+uMzp88eZsCJcpiwki/aU4FBg40yCZBevtZyxhlabYQ41UhqX1pGGTPsBlLMCXvQP7yCLrHsxUPWS6Clr1hmngrioObmqZZSklLFhXS8MpbDNH5kPsNsdATDLMLAJPI+373uQLCDbHIUtJ6LwsAXCih8GwOgCpm0MwDSLSFsRuKOApNXI2pBW0KIIBTOCRNnOhWAR2bHIK5o9b/ZwtgWsskkAJBXiJwsS5s/xR4fSS/JbP8h4kjYFk+fJsWXGLw4dL5j5PrOVZL+E9BMLnFeg/P1FhOSRi20EYAqM9dABASTWKBOiNumHpLIWBaPSne2hvtUvpVF1sWKrNIsEXZaJYDPPaGmfXqjFZ9dDPWSrSPJdmzpm+EufEBCAg+Fkw8vAT9fjKAFAFOAsQgIPCenA9/Df2DaQmKPCdcEUSSfxTVPbX0CW3N+QIMKujoDmBLi1T1AaWkdWLOip4pgC33WXzNoSOAIFyN6W8ZrBH8nHyByHJdEtKL1BhxviXhLFmcSojnkzhbCatlYxVSh8iWXxjhJpbSM8VvsgJVZ9xbzo1CfCTYVWSI9Uo0VAIaGxoM9SfgwCVSKFjUY8fFISbbx09O3iTj3bO+MwVwNkl2X2+2Sw1tqniO3zJeO7yXMI73YcqRc9vufdFDeL7nEUPwX4M4JCzdlE5gz83aRUACpLTB3gMh8DJXJrSnPjNQogicSwivpBQMZSR4+Wow5PM9F0EEK+FH3Lf8h2B+IRsMXqbhei+J3JWLmG07EPQOTCCUN0Li0+2XeIUHRwZCWwAMTWqhDzCQRS5jxJnmddJpJSZ3jYmdWtERG4JUggba5gXFRjga1pfyDpvOWT2TL2yoCWTfKU5l8M/bRn9HBI/VxTCNkMSX6ZTMBIbGp9exhLV85UsN0EVpljcaHNbvH6WrARrp8xe4EQ9MWHuhTiMN2eykJTqFCbB7keE1KSxIngUoDxfYzjyFcE9Wsuy/aEacksij55w/L4Ze3lnXAHZvblE4OYiQp5WWqxHJfinFDe+oaZeqYuhJMdqlvhTqjZDWjjJJDcjOmwIObATbkHeEMhRmeMQi0JKcVgek8QJ8ttTDF4XWWHy9y8fW9wp5EEffxF1mHzC84tmHZmQAp0YPSnsUEM5wGc593h8HmBeKEh0URgx1FsFw03AgCp19W1DDUSsObxKtNxgsEiqpRYPJVL2A4mKCiYBL4q+DSXgFUOMyuL7N8kkZywDBhlrb7Py2fb0CXi4topdH2NSkY4MfSWZQB9UJxA2TpZzH73/AKiVFkWAixm1CLKIVISrAczBu1aOFa4f8Z5DVJtUzp08pMTDLPto8lL2eEAa4zaLC1mb5t53AZU3hP3PmQSeXj93hiGmRhwdwIGYNaTAv9hRYO/L9z7mAWHxD4dbBVZ9qhmRATTUBMSTcCymsRGM3C84bdiFmC4Yjh4IHWr3RIK9hA+ankphqDCikXm0QDiSE+WwLNENRIXzD5LyX3b0W6WbyBc4uCIY3wbZmkt3Ulk5H2yKkYGJGugDyMBecpV5WBKemIcKqlz9RNIouBwew2qFoEtowxaQxfhpQ0CcC1Jet9TycwKiQ4HBFhrjwd4oZIQlYASEjw/wP13glqxpWrOHwHQYG32aOFcobFGNz5+DQ/B5i1b1g79PYgI45iAxOY4IKYeTwQUhoTajAQWrCJoAuVIDE5RZdMWuyZD7P+Vb9k/K4NvU24VtZuPsPbIAE7IBDhM/UOyzV9b1ix+8nm7WHnC5OutT6AxxZwrZY19i8Ku+NT7+bDJt/APIpJIE2Wml40sKFT3No0q7iJpk9ySFjKhAjExSTDx6y+31JYv0mWZzGobv4Q08+ZLYJoRbyJPnsmE/PbYn9L1E2tjHFXYW+5f2A3phzd4l2B9l/sYdHhOgCJeYuRHEX4MSmqhQoLYUdRlciy6woImlvg5JdkQ6UZC/bk4RZ6qrCKIsepLtw3BDfQULawsjze82H3IY+h95DkPIJYq+owKyK2EYJI9LEq6qK+Cg+xqZV+IIeARn8nxAdZnr9RvGDkpiENOan0gZdI5EvowHFDFSduwAL4u2CALgoqzrsdQRyB5TmRdOiwtwlgYuKgApPfLwihYV5my/qXCSYZPTxX57N8v2S+OGZBsNDCMEYCxDb75ZiiRFJnCHE+Iqyati4OYkwcuE15+FRwM0KbBFMujAKYCcfwScyaQkZtRgm2dHLVxX7B+oCajbhXqDmrSySDiEhCmPD2OBUcDZw4lk6EARqET0Vn8vC9PJOnZxiW8zpkotSC5sjni+sxXYnNu5duQqZET3yYg1lwgOUVGCdhAPGEHmvYwmuIMgjslxDx1DFRyPbKEXkRQsXpIDEnyQsLc1cdUx77v6Yg9oWS3JLT0ZWmByIwbeWzBt9W2pY/aG/J9QxJYd1zMkm6oB+B9A38lANpkGcqMwE/NN/inNxBASzViYYVhYcGNrrIC8MibVObLA6BbNnioDhz0fR0Cex1MAQ+5e7gKodLTmAJ4hP+9kYhqeiHQ/dtfMt+IwGWV6meSSbaBjhlfgj13J+8SaFGIBwQumdibp1lmmBkPlgSgWpwCuk7y31d8kCwW8wMBE3nRY0+BMchRtpRCClkWoz6xIELEKiedyDlZsRDJue4fXCELGMAhFWQWT1FZwpaTCAJY8v3DPJbwkz5Oj3WWLErmHwUEGC+ChIaSNRckCRhsr8EBEwkMJtAqaphulmvriaUHsY+TjjaBwIQoh0MJLcJmdF7BsML+05aBW5M4g5ggt0Ckk5NibXEBy5IGO1Oa231luF9k8cfWAaD9qhPgXXvEmlVNcCKCfq0YcCVkp4WoWYeINuJ2QxFzhQ0bmPiMIZAm8ADTkgQp8e6CzyGNUjCIsM8J1d7PRYsCVNHAvm2pN4eAhuneTR+KZpozJcE5peYkYiYhDeMl56CZLZWxSRzxpzaFpSWsjTTIGWPPL58gdpIXCIoaUTih4ZBUkGitGMAulA9b2cZ5MeQTtQEeuS8ILADYnwGTIoyj8MXK7ZSViCOQ/M9/MQRQA/qu41jNFRhqL8IMKzJ8Fk9qbNB9XKKLN7Exq1Eqs8A/6g/dn+WjKZ/bwIcljsNubyYCdDvWGMZqR+D0OgXBgkKPA2qxevluk+TYMCnwXCCvkGQCzAK64z7nZKK8M8hCgTicCTyAihk41XKdWI8DROIgOGtBkRqfTf1HbsWPjruSxxw5k2C1j58Qu+TPdQN3yDfYHmseMmc6l5ywt0mkhhapuokE4IGSDW/dSLbUKicMVsbG0FaOhW0SjAiS6xMuF5sB3ylDm6pGCp+YUBBLNilsGh3OvAceMLnXQEqYqqBDzR8tn7fnslI2hMMfjwqTeh6aZJlnv2DzLZFBYcFrgtsTJhWRfOEIJ65JGTxJFHAcg+SMJEGkFJew2NQvLwcNA0VVKnDhm3QvSoSnkHIVnO0uIkwWUpg6i10zASdfJo+nsZUcEfpd3N/5pbaFj0gASCaIVLjjq/wC4iVwEqrRrd3AZJDj10kUYQWvHUdJKKuwD54i45K4AY1FC4X6NFVLjry58gIrayZ32diCgPfwIaDC1OESmp1UdQqZmPO4BcASbMNYYfrDP9IdPW2CI6chrQgSDrNMSPEn9smEfd1feC6a3RMRaMYpErQ6R2jCEBxdsEE0jWRWyqrCdBwg+1BPBBXyfSraTSXvWEZCEV7UayQGrRRBroQBDUw7cstqreHRpyP6k5xYIg9nhQKEpSYyFe6BeJHrm0NL5hbZri4oMyUlhVze8RzB9uJZze6ApyNC5eX8lxG2wTjpIVcBlbeSCUBQHWQRRIbNGgLWNxJSRHJV5rIX5hnb2KrD4hsXEQYYYK3KvqS0l40PrL+Rlsm4j6J2p+L+snM0vZhrkRLIOUF8pgACZSD1BA7CQPjvdbfyeFBWrImBFYeBCE5oNohUZRbvQ2AIh4YQgDzJ7hQ788CathE7bHk4eN21MI4Ejasscy0Xg9jECNjphP2riAcksSPL4vcVtRLpbZDg0oTI7UBXLwQ90mxxtm6kZQfk06OpG7SoIAs9aEGSoh1Bw6mb0pKv8LZoMUyjLrSxIuTjx648jZq528zMboN88WbpBZt2eMPAvB9t8sp6pwkWNH9L0BBGmeQ1bCnQSCEfeOw7mwz4Xsv1elIvX8zBm1mzyjHFbYdMLTq7u9YTj6O7Vn8mwE4QWgGkmg4SCzgIrwhDEBBzAhqDwp4KVYjg0iNFESX1vRwDRziifVCNjNM+Sy9k6WOUNQvOQJlP9NsLzgMbDfFIwKyPVwSH5/wABIaBzq+Oo0r+L+3A64EsbE9cUh1+FAIDjjYRRoSIplT2UKmTfWagwDcR6IXkX9g2l6l4ZO22svHhqelPxCcPZe8NjIT9lCApe6eYvrgARETkiCjIMly41egG5rjORsJbRpGzMkozHAExN1syoOQpumMKi+e9s+JxCVudeWXLB6JdkXVcbOfg3/kNVWMBtLvOsKnQdhY4rD9sltHSO2Xi7bRjliiUoU4bC+Lxl/g0BOTiUwJsATpzNMf8AwCZz6vSKULAiJbBuVHxCpJpSiKQp/EezRd8cM5aYd5tNnvZGFMYdiVQ2X1nWCIHOUyjUNhRUQRtC7e0Ph8vGbfLHuRl44W6SwxocrfvK+XzfkmhQ5ksThatoHmIpIo6PrGecWHcD4SKIFsKCKJVlgTcAEjpqEe5GQ//EACMQAQEBAQACAwACAwEBAAAAAAEAESEQMSBBUWFxMFCBQID/2gAIAQEACxMQ/wAmyQ/y2H2fnVn+v+D/ACzv0v4s/gNbM3nl/IRPYUW254+iJ8lze/Qvy+YPDmrV/T+b/wAZv75/u/hMtuyp9b67gy9iAd0LEgmK1/F/LP4J/QvU/gzeyjcjjMN4iX2Cgn0/wfyNfWb9iL+/8++d+Az/AGXb/q2v34GT+ZHMh9PnZyyWfmvsD6T4/wDDwj6h/P8AxsWWeT45OfUQfu1NE/8AkF8B/S/s/wBf7QP5/kH9D/R5/wCRH7Yv6/Ek/wA58P8Ao/hnkfBktfv/AIv6/wAQn/Nv+bPLeBtAYj4Pgs+P+/A85E/6EP2xgPzA0kPFiRLbClx/iPL4J/8AKM/HbPH/AD5LgVXfKYRYzNtCgSciLRP9iwSiz8X9hxNANQ/8fP8AQfqvyP8AQfrW+I29oWyBqT+MUX85/ODaNC/wgdkLfK38Kh5L/Jfg/wBvstHV/wAJ8PAXeHj3c/afjf6v7P8ACv4qMvsID6Jr7Vf2ivOD8v8AODf0/oP6P9h9/wCYzD5gx95x9fFD8T4+Jug6a/XWK+wEIeMX3Ht/zZB/7rkXzxM48J34fxYQb6XTEB9hOif7E1AiN8n0q/Zs32WRETgrI9P8h/pU1mFL4H0XVmPS/RJ6I5G9CKcYBh/se9BaOdxuFRiHCCfOzUHFsZsJ/wBi1kr0rg9AynTLcthfvw8DOXAj/sDNR0XKBrxYDpVTBDZuE4CGMQWh/rxaQ8qOsCvYd7XWYvrx1wUGpjC29REs3+uSoEWhzKZxLtYAAHrdT2PhekoEYEix2KQIgjMP+sdjyQka8WEvo9HwNe2S6Tw9U4xwBRk8tgURlzr/AKjob+tPfj7xYLDpZZ2ZvpM0wfz425qQjPPjd9oa9Y17eqUNE/0atqUp8DKhuN492sjVF9J31jcy+2kcGCYjfpyfcBYi+DDbDiWoP0f6JzazM+I/UBI3pstle0/yiP8AgbeuMkxOAxM7tn3JmJlsAlP0/wBBryZe6/DN8OKRwHwW+O3L9biG0aLmSeX2bQfDIHjTFq/0JWcb38jNiGl6+XSNxelejDmLWQtK3ZoIKIOGURX/AL1ZIp7Jffwzx2Vz/ALZbhwtTKMSjts6Q3xX2MLmej/3kokarjlxSO3PGvbPD/gFjSRw+E8RWZpFRDkTpeiw020f6GUC/bjx734cf/AEowPh4lmNuLs7Boa1o/QhQf8AvWBetLPSWerdPH8fAK/R81zRDruw+JIIMA0zq8w8H+DBtTP/AAv+J+gx/cP8p+h+KH6ufb/TPVn0IvZt/JZ7LH4NuQc3OfPq0wRe76CAYgytJQBgwheulvWraEEP5LTuPA9N9b4z9l/iSw9z4Z9IP7H9Xr1P9P4Me38iH6oNpr3N/bYBj5/LX5BEn2+O3YwaHVWkpyM5a4jHSJgL3bMNxAzBWh9ohyAcxjqkmlwlDVh64Xg7Ok9Gz+wFBg/kPaL9w57Qdj+4YGWZkZxIDhN+4hxYxtD1LEPtvst8818vy9P8DybkMv2ND42vocax65K6eRFWdNtBZ5ix/I9BinbXof1yfi2WQPTPTHA0c3AUA5MQ9I9E7GUO1sRYyU4xxm7xvJ6CONCJN8d86fl1c+YJhozehCOQrptERdYd8VpGoxDcQgMOfRMM6XX0TjqN3DPaewPaXqE39wkM76IHshn3O+2P81fo761fU9HBfUUdyv2IHouYv8/H2+Tkbr80O5f3GEhDAPMGxMg+DjuFlEDGEfdYOQnMh33OSVfdv0ivcD3r+C/s/efQIfz/AEazIThAOITyM+i5e5e411Zm1Ql/RUG/HnyOEn7+eQeHxAJFAAN9ySs/JmgHsZhzmHMD3B9Zr6Vk+lJ/SH7FcJhJ/D/p7zjJKfV74UHonqyncYnqWcXQiXObitAm/vh87r8fVt5880Ytn1RnTH2GzC5BrviLS9Atg/BPWZNN2fre0TD0inErVi4zs6I8kD1j47z2HvZj2TX0F7h6gD2EX+fQN9+EenlA/iT+cfry/XN6/E0x+bczwkGwSkmoeJPIT35aYxICvrkW70T7qOQFxgv3zsJuQPbXXG9kAwIPsU4wDVhjnM9e4jiMPvP2DIpKTiHiPxX2BA/DQoPR8+Wm1TpgUGzPuzElexd+CAZG8RJSC7r0RQFU4IJxKgXZ3QfGZ2UAgQyMkKoXr0us1D4E+8H9R6AJo7TBeMoIU27b8Uqs/Fna+v8ABgg6oSIPSCpZU370yS7AePycggAljRLjmLNVR+6J6kOQXih5BFlnoouMM9ZO2XomO1fjr1B9wX1KH3ePUONzD9KbvFH6+G/qwSfEzAbnz7y5GBMMwLCxAjxRIbDsxr4MOZg2UoB+qK4RXuAMRrD6Ia/TNXUDzDQ5OKkfcPayVBd006KGO4+xX3H2Yva+Er/z4GAn9nmH4BU8dhz4Hn3kEx7q7iHK+HM/Z9lph4Yj42CQLDkceX6CbdIfRdHI+qnpDBPsnE95P7ijEP7ZrqHvBJ+L/GQ71H3C+hy3xKAYfq/AqCFa3xr8f78BNJLoyyuMTW6Thyzj4BmCunJXp4H7PVsz7jXcuvoAZD05pPQXo6TfcDuxek4yCoAARd+EDBUQWf38V+sHB/iBZ+DjGZFr9X2+IeF0oNHsrQLmgBogPuecQ3ks64nZA2mD6Q9qmvTMwkzrAkbvshsEer6tf7e9yLdBwQGKw1AKFegKZHGXXH/vwUax9gfdgX4MvFVnvA58fV1nMIrwE0Gjmk35eXRspkPPDcvQzHJjoWTgr6aPsN9gXrYbJqc5zQU1eGzP7/wXqtdB9I3KrSEmHJy4KgvEZ34pU2ZF4h2ApXnXxUmHPn7lljREhxEhzUDQjiIpD5SchBobLfCVw/XHMHPAwiuGGFC5o0Qxj92y8AXNtZoHD6EzcDrQunbTJPaYj2SPL3lyo8AT6hVr4GBhK9BB8u+DpzrMoTizU6v5IbhMyvgih6IzC5hMJ4UXDMYGgyqrHdd+oIWNg97fcJD7jSpApgNat1qRoOjUywjWRIfH/nNJXqlAKaxoAPhyN9GW4TwfICyyNVqAACT+N6bigJPyGM1D7Y+RoSbdJKKLVG4wkmBWCrDkaMpcg3mYCQ19p6sM5MOub6ycWmnoxX/AH8fAEntI8biGk2uDwPqCyzvpY9Pnr7WbTcYzgkdDA7462OLObvhX7lgxuUWtRzFDpdMETeCDROcETGmUJNZdPRqS+yMYD+Zh+71purQp6SU9IXF4X9Qu5AHx2A7YJwwIt1meMLQRpo8f1fG+dfUr1XEmXtjgwu+GVeg0G0e+fzesw0hkmxMSazBMQZ4K1q3YdgsAFB9p1mQsF2zK+4iwMIrs3wiGEhqJyDvh/YCzXXAd26BFYOiz68CDGoL8H3YtPu34tnS1CjEmPELYIcRtUAKTjTg9dBDedSAcl4hgARlSp9wA5umXPigoUJ2ImuW0KWrP6v2PvLLv0ZxmfwfXYMaoue9APGFzJz9FT4UwGQYGSNHE8Y8fCXr5JrovULDX0B9wC2pCXZ0FVanWYa5qKC3RCd1nDsxpfcoJIjk0BeyBY1nCAKGxUB0rPSwcx0DUfpQ1RAsnRJ5PDcbQaIPq1rmb3UMNX2sz+MQCxyXqM9pL18LaeM+QEKfXQhjLA1jfEwE/0AznLDrAlthW4HWTNUA6RfTD6hL4MH2H5TEVFhrXBCEjTFNY4OvgA3poPJcAsGUCOhr98U26VFuaFNGCcvYGxXfqBFxwFHt3aesqzvjv58H4MZxfQeKK9qHKQLEemfdrG1LaDl3BAc24PLxgTPqb+o4wT8Y/yx7IPwJowM00PsgDIrq2JQ6AAYwzTYjd3RpukgAmKSWRTMWj7OOopNh3EFqOP6Vo9dBEj+RN9nWo7F5B+Lf8Ae76Ld9kcS0ny3LpmmjlkjVuuQQJPQLwFd4pvo3o2+7H1D9k57zDC7DNW1xvqQAdtDRB7GyqiNkbrlkQiR43NAWLdSOQNho68HgHJCUnMAw7oLxbT7c8qOjETCekMHYg0Jkq/aP8FwD43w0bsbXDowyF3wobvXKy6J4BGBFAIF9zOwO6wBiT+VwE5rJ68jnAOAMN1nic71uEE0SExHjZoJtTBrE3J1lZkul4JaUFGwkcxi1GvXhueNdQb7R3S74fA4y2yA9s5J4H+2D6DgETexHEo9EbAscUMg+goBCJDqHp5BNBywgrp1jkIYjip3AIqiMQRSHy4jUxAtWTWTaCYfJM2dPFBRYgwWSQhEAPBBxv+snh/Myr7fQP6SJfPZehTJcClQLcvEjBS50tEFGKCg4XAAgGUoSy+BCPAJRabsNkxCBGAhcxBYZIEgIdis3JplBdIP1PTfB+gMobYw8BesSbbMwpFQRNt8bHk+ytznHrn78QJ0XMh1ZAHYUygVANkZlB6VTXBygMJaChc9RKBsXnafBEkHLiJOrFamjtgZkYfJrtHJNLXJmQbfcBvBDwSmXZbA9g1V0IKXr5B0KS1+/my/fif84FpYzdsy3y68JbrIRmghGKqoWLs6agFFCjrg77E4DGZCYvQO3eVO7WBF8IEwjoKinwymkgpB6mYBmRes4GkmI4oPrsNTITUdySOxI2FYQqyU/u2IVK358hPh/3EWwbf1FwnhP09wbRfn4HuEu9B1CGhWEISGJEu4YCxiEaxOHi7GFwNXkjNO1sBHiDBcATANA4oACdWr4JXrVgjpoJQcELklogkKTuCKdkbYiRCGHQ+JV+G4ISHs+md9kP8T/IDcDZf04XLM0IQagK2WJQw2LQzxA56mJWOSs34EWE1cXqVtIkcR2gEqT1qIVg+o54qVuZXBwwhfIwzfcviiOjr3OAR2rerA4ZWzhctQ+AR+pH3YFke2SvT8ACg6w7zndWMeg9L2Rn1I0sgyBBHxIgAw1N0WXMpojUf172F7mG1GTEhHnnSK7Ajc3fSoxUungH2gpGxHfCxIrQ0yIE8IYh270Ims8sCrbNe03yt/Xjb2oU7b+F84G9sW0hHE28zAXHACNCeWlx1KNpE5dRXhEUDahYPtSxRNis6R0VRGZOLFUV+0DYjAHCHXEsxVHYTXq9aYSDgMdC+IDgaWkcIRug4tYyO2ruvnfDchwovMfd/DPnggChI5m53p+iDt1JlC5H3pM5IWC0DoTEszl4ytxkP4AJs0OBFm7bJwJCW84DMQDcIOKpQa2jEKaDngMZkjK5JhsYpJ7ZAdPCcTXV5h4zy/rbSELfXw9+AMuzSvYlnYTIlsG4gKoRqxO6AbDYxLYKad2YmxyHfEKw1Mjgh6JcahbrTMv2RPbkoplVucgDWbKZRjKzAYrjFeFHgR9p9rt40hI5NQtDqHnlYPwC6217xjb8N0uvpMQAyAFGeDgtam88gVdBoTEi9i9qdRMK836VPoc3CC4WeGw+vEfcfCBrkBukUNdBIojO6X1ya7AR2YveFYzWYwg9jggCaV6k3bU+M3ENc3nRyX5Z8Pu69RsXcz4HTbnrZkJEbUZ2AiatWQRwQcuvEQMQ8YA+oIAV+sHNp04dSyc0gSD1gBlz2NyVgUVhEJJLBIB2csEkY7WmIBko9UVW4dXInyPGk0W4Ksi2OT5xbQCY+M8WKo3jIu3cEpAyeXuqCXZPBzpIaAnUnTgJjEt4Ll0zmpCszCdYRVzDAF//xAArEAEAAgEDAwMEAgMBAQAAAAABABEhMUFRYXGBkaGxECDB0TDwQFDh8YD/2gAIAQEAFD8Q/wAEz9M/fzN/t5+zR+9r6FfxbSkz9AP+OfdmFP00fubTH2kY/TUmLlZhkZv/AAn0CEY/45/Fuf4D9x9h/oH6azf/AOQj6mAf7VmP9yaf5jD6MT7z/Dfuf9DQvdWwSo1wGazCh4xD6P3V9z/E/wCfr5wioU9MRmXDp2J1KtV30lherWV4VlgNQ/bHPQ/xsY/6hzTt/P2cGxxKBN85vrM1q5M5S3glgdizzFbe20bv/ZGoLqbq/cxVfsPMBug12S7uuEsQbHca/f8AiFQPzP2wvzA/P0GRq616QnwAe5FbRZsNSezLY3xP54u9ifioX5ID5ZgT7tkH0tEfjKrlUB1ih3IID9497Y95Y8CkPgkR8qKnujiOj+r7fwFiO/RNRMzIa2bJizrjiNCivy+n0lCdss+CXPgWeW+krez6T81hskj31PibBNGFsZntNXvCnue8u9pr8R8tnwIrXpBnuIr3I/4gR+ufrn6Yn4+hRyef5GNhVsLrvcA9knzhjj7iKKUO+lL9zNY2ELF0uIzroPEPv2ou82eghe5dr6/wCjw66/5xKBXXz/BrGyjX8G9aR33mn+yNQr/H0RZ9d5zHSarqTr+I5tcf7I0cfCDC6L8pPjDA+u8QiqbCEzZCqVodaxMHTaraxnT1/wBltrXoJhTQ9Spi61Jm6xNaH6MSX9dZQDJ2Yvx9MLuv/ZAE1A4a5eDebm7dbjnbesc06j9ms2AS/evpuaPyf7Fyli9HQdLeIWrgJkG/J4m0dT7NXwE0poERPAZ21uFFWFe/+wQS6LYtxljIrXjGNOWpV7zGLcHadJuL9oKHp31lQbpe9yk1lxhzjy8RAoNbdlJhOmGOz/XFhZS9AF8RtN294ZHntBnuv03pz9zpSZ81MXq5bFZ7mIbDjXcPSDULNSX0O0cG6un+rAeXfpBDtq8qgN5Bv3+hVYYOn03Wp9X6F3Ofr31ho637MdDIX1H5m6AAvfRKJ5W9KqAqZcXSHRmRONTwzHcH/UOto83gea3a6IYDt9hS0aM4hlvZ4W30+zd+uWnHrHAYbNsQLKrDRs946VepbutqOYarB2/KcxeiFvY3OusyJyf6VvdFNDnQeY2p1V3fsLorTbXfWbzr3LnZm8xfe23Zhb8MRlq77SvU0Pef3M1A5mAjYN/Q8ibjvN6APl+y7dS70LoB511mEeE5/wBG50VOFyHGXj79nQeEZ0+uRn6oUfX3hg3QN1UDd9m0AuXdavVdpuToJ8P18kdVQcBa4om8427j/R6aaumL8/e6vA8NPlmtO/8ADzJ/LvG94/M3yv4mrsPFzmrr0m9rHvG9J7pM1n8n0nM1wH2Pt/odUKs7Fvj+DfQPIs42/g2bZnH7E13/AHfibGPBr3j0PQD/ANQo+BTqq/JMjvR9eSq1JoxYciInRjq1U9h1iKUHoVDcmxyPi/n/AELhX8R4fw8C3uP8HLQfM3Ly+uX6dXE3KtPGfSdhruYnICvRtseYZSzdrCGhGnrk6jCg9hYaOu024m/Xz/n8FXvU3d3+HwfJ/BvY/U3BnjH0qurhvqxraTJAb649MYwxszaHdU9ScgH4hagqe5Q+JlAXHiaWm9NX6k3AZ73/AJ7lVh6e77OX7nZLfB/A1gVe00FCjyP0ImNprF23EyGwasc2QpAFE2dfSaDAPRhWBv1LpejLqm33IH/E0HXitPgGWIbLXCOR6f4RCH8fZPZ7/wAXIU/gbOB95q1Z7H2a8PtczRb0MviaNC/ZJeM9HsnmuIZawOy3amykMNz5X1nE5Nf8EvzLJ+yB+Y/3HFUs+kqV+oH8T8KmbgYjb9N/4OHD8/wbYI4p9PebzcSp3/t8zf8AC3NhXrsehNrjo8/TVXSjt8QfuH9z/qV+WMxzH9L9E/RP1T9E/RF/UX9Sv0mfiFfMuJXxLmhNL7fSsRpehQz/AI+hVr/w9/4+RnX79n4BTqX8H04ofm5vY9Bfeb238UjzOH3RU0WYePk+nM0Qe+wr2eIKgAg2aTOzLCVGwADhEw0sQPrDTxUTMw/EINwMnzBphs3jUSeikdu0sceKiU+ZYekaIgOMaxFxf0iBFke9yn4iXZUJiAlQMDYX7xrb4seJSdtKm9b/AMnY+/lV3HyqFIQL2LGeIUPX4PUhqvIlHxDUgPaGtD8PqwUFXRyL2JqgBfXNePoXnajmZshPK12kM4Sb7E43iuBa9pZ7y9wKPJFcd5aHFXUqDuPeNqI8KBslNxpuWCts3KK8xL9IL95bPrGZN85gBTzEOh7zJ3/Uu/RPEmqzJtr2hCt7z6EQHOYtdzEcDuhfEdluFc0fX+Xt97VoBfb8w1QB0ILor9F7DE1PQ+bDG5t8fTUvj0Js0D0CdZpdmnOQO13Nf+Ji12m0usxv0qfAmz1xMQ84ite0MfDUIXxpmXPSNPmVn1gW8T8EIgDxmPzqe5KhVCzPxHF7EEmHvAifBAyh6XKhLfNH8ji7fY/gctI9hmxAGdxarkjjFL7WZoSgrXID2viKtAqugq/QNY7VXVrgAs37SlLWXGaUmy/a4HPVURqy7dauGouhygyYzkjAdqgFxo3PytQGP71jA76wZf8A5A0z8Jm/aJHslBA+hR0LM+kBHtpD4CYgo6ymvdqL4IZl78RF/SNkK95rQUe38nY+L/gSIbmzonDFQuF9jzu3EKiAXctd7gEVNOdGcEOzTHSa1DZp7vx9tl2jpY82x1EdDY+qc6kWz2hfrKEyRf1NcAMX4wB8xoO8DMCFxnvGwlleusSCj8RX8wo95Y7x3pipX1W15iD+Iin0gipo6FZoGDwKm/8AHwFfK/wdXMaaanmYosf+zxH59I9Br3IHIN++kboXXq3NwX+/scjgfe/EzZIf0LqbXhOtC9ohHJv1l39bPeCtNnWD64QdhmOF9IhbhjV+lVF78xD4SleEiH9Qffi5kepj1lh4/MKID3YAeZeegTG5Z92iY9t4pZr9NfSOwxZ3faZ+0gUSma0cafdyr/P8CWhdQ0LW29zKlVotps1tnmJIWOXcZraIwVBwxbXkpw4FRzS6qO++IarjjOTjE1TUvrSTbMvDTz9jCyjXmh0pjkrK2ukO0MAC2a+sIVwy16qivopMwMpV+C4V8uRhQhlPWvaWPcEICei2RvqRQe9QKHeGDosbDzpEetQ58H5gY4fMFr1ah2/mfEFQVhV84hV5c/cWFimt4lVh3G/27F59rmxt/Bpas9MsdeAvgyR0f1tNlXR146x3DWOf1G8Ky5mSxK6M1BBq96ur6fXIOlHBsbpwZQLQHdaz5lgxBrpp5mqgDL8QEe9sWXVFlDsTb0g2de0whm64qvRgA8lIeJgHXFPRgIHfeKeD8Qa8UkV+1gSi9qSKO2GKvQmr9AogE/VXrA+4VG34xAwpQXipYsx0V9xf9S/HWGuV9vPR8H8Jq2pUKs4eSGaw9TfgXaYVCrT4rmmGhRa82b3V29JgWDOS+m7p9AFhz0WNlA1fTJ9m8AKr+5hdumk2fmDHQ4gf8RMOmzAK67EB2WU+c1UKu+7Z4i/ECmtK0OtQt66+8bns3UIvi708RUegMT6YRu4L76waYVKDExi2rCzR+3QjsAqu7FadQbYz4+3f9xZv/AhdgKiUpmNMQp1K4EwHsXRqq6s0GvxCsNF7RxjVnJJEClmDsx0XerovT7Da6gq+K2rmWC5w8Qz6XKBx1ifzFZ6QX51g38R+i3MK+sI+S57xKI/Yupa96qo1XkgB8CMR6VAfiFe0S/mK3XMIfiJ7oJlv1AAC/c0BVLtAyqLpt2+3l3/DsAi7ubnKKR0SkO7MAOuu/SWVo9ONeb+nCJ+YVQbxtjH2aI2V01ixmqgOMDm461ZVDoUbSn3/AClB4go96g/h/Ea9KY6raIndxC/kS1+1nrBHtN3W/wAQO1nSD4R9qYg9iXfSG/zEv72lUI+8oPaK/wASz8zQGD+9fuSh0ztbn0lhCt/2cuCcBj+EQOSz0S7AtyyGVDwSgOArNNdLekKarz1xrG+BTkopm408in1rDyr7Gk6k1w1jkwT5+qLjQ65y+Jb0NYpXrApZrWsffZP0lz++YR4lkZ7ET6ae8zOFvXpKlcBhhFRYFOcfiUequjTrGoWNjrW20GG7huam1l/MBow3SinTpnaYDADXgvFu9fdpvLoQy1v5c/R/otrx9nGb4nSx+P4egD0ucjUe3xMiZIxyVivSal7Dm7IWi5OT10Ppv0hgNqXn5p+y4itGsMG+cw0Juyg00ACvof2oaeJ+kw33cTT1ljZBXWKKc4lq8kNTk3dcz9UpXaFsQWUiuoX6MGXUa6QKN3hFVAHW7J3RdRR3C0xsqJqmbd2MX00Frb27x+2rovu5V6tbQ+nd9m7/AKH1nUs+GcfwNXYGewi0QA846My1wAvCLrbiYKc4bhqOK4iqCAnhCugmg2HR+nBHRrPU9Ptyf8Zy0fX5n9GZAIxYl8kKdV1tm9zFFQZHbXR4gHQKdZgA1qtWvWNWNbLxGDzERn7sx9YYU1dcdo6DvG7K1PaOS9V6TQpesSqdE9d5w5HjY8zloOgUePtMWNX0vWEk6O0pd9viWHWtLhWynhs8fZsIA8HzObr4Wb/wBtTadM77ZmCpYDdS/JNtib4phoC42DofTaGoge40kKbBZ4T60YrVxbOeaOsL02T1qMxu00VQ4y8Smo0brKTvCBo2dOZrMV4i29AOkaLbFYrR1lWaAdNcvQ5YBjd1O0rAb0U9X3ho5sjc+Y5mVjnvM11nLMQ4zrNSsXjbEcjJ3Lm8BMtZid10uR/EV5gd9R1+7kfJI+scS2manKP5+vKqbVpN3b8/w8APd9MMDn2KjV8t33ohm3BfFo5gmmaah01d+Pru8nSOpsvZymhUW+4nj68wE7XpLpDYq9A0Fasbtqm6LNOlQeAhYDV1xKKaroNT1lGzCL6WcS6upVpjNh0zKuJbeWc5qN35KQF6YqUpvBouhfvmU1xkYYP3EX12lrKV9yduY7zW+8y0ZcwIFqIYW1VlF845mv8AwB6/djRUHfa9o6HSOK7MLAeJyKPx9dMgPl4+miGP4dMOvR+kKQ9FW7Vqt4WAWk0c37cTCYIbUV6TKXQvrS56fXjiYzTf4mV/+bt1+rEHojvcacifOI3W79O80XpOYgi+azvpHZdlt4zCi8Qze2uNuN4KXCBwCabcQITkbCtDriAF2AE3yNRhAD1BqiGATJ2O+8FE1XjiJVum/RifEoxMTTG45a6xyF7yhAAnAxi6lKeJj62ode7oHL0Y/ICuqxwtbeZjVbibBeecDCgtden1M7H0L8zY3Z8k3+/aNUJ8x4mcmezNEekawn8ZmEF58q/Zu0PSveZBxuuhb3+pBTff4hdZIc7zbOg7945dpks6QLo61C6/cKBhV5uh8SzhBmezOKWGR57QunnokbNONnx0xrKofTEt8wKBgo/HvBTyOkSs3uOwTJ5jbwOFNen0PpmrVtaF6t4mdeW+Dgcd2MBrbxBHODuzULEU1iK2/H123PBbNA0fmbfRxx/ByFnuEaNDbthq3E1NT3FenMunDL4Sun2bExRWJ2X1anM2T/yCLqNckRrua6adZoG2NW1ccaa1ES1StOCdGD1goVVmdpi1v0uNlVsaPViN3pg8RwmHnlYaOzfpiUNSyh0U1C8xZ6NRvzD5SZfSBTzhlrzTHSbk7YjandfsKAkxjW/WHftPyQh8wz4xCCqDhzp9d1LZ4o8s9j8zj+LhxMhKPW1xwRttl+T0nCUeifY6tW8HWbgDwFUERAF0Zq34jB3GFTAUXl20hQ01vc46RBRCyVf4hdGue9R5KfzGhVq3pfBi4BUUdDk5zNBaItNEOVZPBmNIGhAtXrjasRbuuEs3lE8j+O8oTV085g5VnG9UxUvd6azJ1qN/TDU3mJt5jvdw+vMTgQqiP1NjHPa/pqtiGuterXYjYzj+Pf8ACCO3LXqTjZeX2TL9HY4Lr30OsyiUOunscSh7Q3bm/BbG1OqwlPiFOFZ8tJZ+fMtQdDWCW6tkvdCl41lN23+Y1j8/+TALhXttMppods71Kp683+ZYqbc0u0HZywwL9Lhwa0czMbNNzAgW2s2eI0npN1fpYLwcwSvF/TbMZx06zOYBfMN6v4+hhRA+o9I9UX3n9R6zHjsO38eC2h+JkSeNS36GzEbEHcrcXRlgnRr8OsRb9A+espdC4urwTuA9YMXF4Mdj3+zAbT4i7h+eZk8tYIr5npZzDj2it+pSD/iZeSBaNJZLrn0ik41SyxpqfMJrZRWIXjk20g51d/xPki0jRfFJOAzN1p+Zqys7DftGHqKzvDUv4mWDGkWDm42U8E0Qyis2mxkry+06ZO/1fc/L1mO4a/w2IUeqnyDeNBWS+zEsZsKMsl6XMfaP5m9kvvMLgh/DG7MauZ2sfn0nebwJd8MBPNRDPQNZQx4ij7Q/iBWXF9GkLfWxIS9kUCvNQB6kf2IfyL9AqfUxFo2/HFwo4N3WPd0g2G6NUuuJSU6s1sY1gB1NnvMmMPL13mNNSAo71e8Ax5WL+hMKFdf7rLKOG9YZO01e+k1RzpvBop66Qw0CjxprU3X8Tdyu2x0CUQsxrnSdPphjZ5H9SgOQY8Ke8sP94+yntB8Gp81GntFu6Y8/iEXyPW/s5WOdH0N65PhjnRxOFhjE0vVj+dmOfeGYZSc/TWpm5nvEL/5BadiZKfuF9XePF5yR3v8AMUKB0dazemN4lAg7jT6S2jQHDDe8FpChhdzHWFgrGdtMbSxehbTrxcNiDgEjvRW8oT0N/FwpO52mNqihho0DLZBTw30MaO6AK2tHmHHpaBzS6SroaLfmksS7VS8f+ZlGIN8MelQI9BUB3dMVmMAVRTqo3ZeuYULjFXhzx9D6YSGSYPU0fmUT5LIr/Eae0y/XJhv8fbsBb6KcVY3UYT0NZnk8AviZTV3KJfWF2Cm43Zt0g/13hxnXWELHpiNeIev6jpxZvCqLzG9//IKf6xIXt1jjO2PibwWu/wARgcojDpGbtMI2vrdKXzhgAtdCwf6TWuRNb6jM6q7AXi6xrOqtlNDZ0zLJQByJurHmbl4vxX0biYLToNAxnMyG6ZFOv4ZTcAGmmJRosU+b6czBsAa2twvaOuuWjbfiYy6yN70r6TDEWAMNOrtiFc2owN3xpKLmWABc8a/akLO4mM9Hf6bfZov9Ps2JqUldwEO5Ggwu8Zb5j+Y2a5OQ0PMz0PB8x0xeaqZTOmJSOf7mN1c3eMOYFU5x/d5g/rSXF1qvzLFcvTiY0emhDDW5MN4w3G0Nv/ZQczIJcBQvNXr+YTvgvGhg3HD2iJ5zX4blAFXbb0li6j+jXEV3emUO9VBoMUp+rm21e301iJ1wHxEAl6NaKGKvCw34ohQVW98RKAW2AKAEriBo0rKZnYgr1W3VaaF2bRdSE1cY2zmV1oytDNKm8x2ph1tNS9dCZDT1Mqq7ffmponKaPWP0Zt9gRpuPf2juFvtl8szm+HwkAaLs1bafuAU64LM60Zht1NmIFETG+/pEavK7NfaIGesyFa046SwGbx5SBxzeK8xKGzXE1XmsVl1mwyZesyTpxr5IIGfzLpoAdSEEMvXbSCFVuukaCrwuNvMNjf03lFL5zTxzLyLr49Ig8aFOl4lEOrpddmXFaY37JKfIEbo7hc71uqs4G4L3FFR89bS/q2GDBkLO2YKtNGhrttpKxvhIYgUHQHqeszdMqKDGRuXqc7XtniNXgYFrudOsAVijWmbyv4gCHIpa31CrIBRodOK4/hbDzjjE0H7toXpHJll9ZWI1Z45zA0l2XQnONrloGK2GA11uiWXdqhkKTRJTVbwWOTBo3KIi5DZXffMoaAI1y6uc1NRbtA7lYOko+KOpSZw5K3lKjnwHOHzK46tAdukpc0dPGsoDdUp/brSXVlOB2y9rZlG/DF2bxFsootNRvfEADvrzfmJgLwbbaNYlsF31GKN5mFWaY11mTnddfHmaCrVcDVajc0m4baW8OnWJMcVdwR13kY71qFjOG0eHUWyLGjKx7p01JjsYug92f0tuwWjSnioR9JUM3bzg0lY64i66xVYF1GKszfJMt7UH1lx6XKlBeUxF3QgXVV9IfCtt1xiJ4GvPL8TpHsHvOjX3aTSbr/79H7dukAxy+ZtkKeLJUCjQl5Jm6BNoXTLDkA20u4hrVFDlC2aMXiB0FCEvKG3WnMY0VFBS2FWAjICFLselLkg7LJwxY3rjRiLcAChC9aHvpHI1w2jZaJIrIYTClpElKRpoLDN4uoKFsRAus65tvmcwAFrQPDnNkuttHdpuZTmOlocmx0NDezcopmsNnxvUuKas4WrAW66wX4NDKNKdGChdisAFlNdJkhRqtF67U7xaUZoN1Ao3L0ggWOUxt56Qhwuauh9YYLvIJjs5gMrAJDri2KV2T0gvBkGesujJVBPaIusWUlM8TyV0RF61s9VeYG5rTmpOoBffpAem2Gc9usC3R46VKtLmkF10jyq7sI9YzxVHkgz5Yf7BlCuqY7swIlaKoJ1B+b+/cvPx96VdXh0mab58zGP75lOuF3/MBeVmw/3SCptRpq0ojpUyt1BptTRK7Sy1stU3suGWCBTq6cmvWUuVNSN6U1vBwJhGgLnrFDJYbFjhbzCgZyBlEubAMAo3nRzcbOIEVdOsVuxc2Zv02mDbGLvN9NcMVFIUTLttZjWMhVRKc24w4i6KMmKbBqiGUal6tRs5wSymQsOC81dHeYqGplDZixuneM2gYHqZsS4MzJGEqqzv5jE1aFSnm/NTTNVvT2hcs6PLmpzbCU8Sm1eaBowBjIzld+NpXLm7V2ZmNcltnrADnKuKc784C1Tdl3+o6vZFcZ6RDtpk7wm0NhVmmCdM0vXNS0pq29kjQajTWBCNtjtrLr6vjmWeLC98xsBUHSd0/g1UJt9jpusAZDVmzDmNg6v4GZqOI4wZOgEjQN7301Zf1serpEJ5uqtSKKxrgdc53jkaNh7mM3Ay13q6VTio1+Sab2Fb1mBKrKpalvN+YspqDZrWGCsaeAi4LL7wo6glqwdNJUsCjTrgzWY01umWtVsQC9BkXjMUJjqdEM4qHCaw7Hfz0iVgKG40WoOLmVAVwGrG/aZ0NGQL1OTRuAg3V2WIlhRZepFQQvIalINUltyob25a6SsWFmnZ7RBrpxfRgE6uu0rviKzeAWAj6sWzm/xHJ6QnW5x4vtLw2qtWIfEV3W6PWXEc3ZVXFW+ai+8vHiod9JcDu54rkhrjNpsdYLbrQ+aSNeMrYnBHh+/v9+5jsIpG7pdurT6dY9KO2L6Q7NkLsvZmgXdhUo1rfSWi9dkeIB5oy7QuG5avaDRqJ5LxpLnUEV0SALZr/og3WqKeOJSG9pb2uaRqYSscywcW29JR73n0qJeFbzL91DMO6W5159ZeNWlO0H71SxexMfpBBFeWFp2U3ec6ymKOMsFMSrYYxZRzcdw737Rrso40jxrtGTrjsxALsoHdKhA5oDvbZ0hgFa3qj0j5BSA+yICv7pLW6Cj3zG3i+cbR3H1LgHsOsQYud0WxoHmCxdauO8KzrcpDYOZupZoM+060+Cdvu3ncnI193NlQyjZ3ps7PSFpRh/XMzYjeOiD5jThhtdKxTRbWgcxCzhFs0+Im3QB5Qi7UsRu8bxkrk/conc29ICOmcKXAUd6WpnUgmaZNngrpFRL2yXC9aWLhNc0SjuJF3awDXmIjuOR7DOhkQPmNBwI45qUX2yPW6Yw9clJAQDii9QxAYzVreIcjXOIgUVgmhu0SAb1bXtXSLVYREuh0zKYCrZ20TMVeLRapealheLDnzKowmQwxzGNs3hW5+YKF9ce8F2BlqEUosE1bvLsEAjhQ95glpUtCFLbF29hleOAt3iV6P4h3nGQOLiQ6q89oTVbGvedMvmdvvOs4FL5ofL93SoXldAaZqs4is7prSy9pguv/ACbmlKt+IRwM9cx04wEqm7/MFOOB8yumKUZ88w1bbcnFrAte9IuNu8s6m0LgBbPmWBxSiu3eFLkEVFz00iLqNGdi5ZmOimuKZpbLZ064lM4LKHNaPfeJ0lWMBzAQ2xqnaErdQxjrpC9Oa/8AIecVhiWdUIRrKLCi6OsF1SWNO5jSJetDQeij1mBgyWE82MuKVqsTlWQwwgqrVaecZhB6ld2NL/T2nBVAFD2IVwJpNDaU7WmxTRthzFd1E2b9YgSsYau5trOgKWdG8aXNBvLVI6/+y2eihb0lg7jaBdt0efMQAycHbib7p4P4Pf7uuJo3s+Z1z+yYS/8Ak2iIPVL8QdXg0awTXGt36RB/ZmJ1zQDTswy6rv5gE6lQN1qsZ6MbrUFPQmYtMm7pC3oL/WMa6Y1ip2zjrjaAJ6hzVEX27CBPULD1JmropuiMwOo3OQ8QQXmg+BCWdcAV5uEmwZF9IPKatO96RS5iUN715lwTWzXnzDbtfVxPT18JYXdinyJDuBrIpprSLGyDGepzoxgrNGrpKF5xXAyS/Q5LOkCA0pIC9aDpN5qtFsedo5qsobK1iFbrQ3Rmm89YwwWzW3ttUW2Gut4wMdobjTtrBacm4Qy7ZhAZ3mxpntc7/fvhm16/d3ZtVvzNycTTGb3tqFgG1ZyTbc0q+NTmVoNbQfWMtZMLt3hUGrVfa5uNgwipa4YYzITJ4oZTXXaV7wJOXMWkzO6TF24mfq0HG01ddY3rsYydJm2NoUxR2u7Kya8wKU5t2x4j9TY/MT0MYq3G+cbyw30bnfN1q95mxm0xfnmPgvAtWLocSprIhdm9+0N0zffAUPtLnq5z/cSteSgK6RtpoFWlbHtCVdQuk/tQZuygWX1g9NiGdQWJWN4Hey12q+c+JetXUxpTEFm9LFNM5riEXQVZDaKsX0bPv7fQ1E19R9Pt8zqk4dT6c4lIrGRTQCd/s6OiRVxWLONtpcVgCvc8y0Sr5zrZvepK9ZxjGJZoUTlL4i6htp0Ru/MeFhKKcjlcM6qaBQ533gFjIYx63N45FUOmkBM62XXGSa+uJh/MSnG5Md9xvcNo7ORh7hXPeK91pTE6il3nTFyhTCgFHSt5xLshv5gT1BnbEN7Aa64HSEOby9oOi0F5brCrZQgINYVvTFTBLsXixoFmuZWW60vFcsdQtQ+d4CmN1day8c4U2wygzl7S1R381AznIcK5upWas0cu2mdJYIDAJa+uhzCwpyi6LWRZbReQdd/bEQI1Vh6rUc62uQbuv4E6ocXy7d5pUsO2fX7fM7j8TREm+zOCZGTc1zFRsizX5WogOmSAZLqljj5zjfaJzpveSFXZ1PDEN5MK3hdWloxDb3bvjiAMG9usXpKOkbrqY9r8y8a1nOm+YULbeNDGumSZZimFFo2LJmsbNytzrKtL1PGs6vJR1NZ//9k=`

and base64_to_pil returns: <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=480x600 at 0x7F309E68BFA0>. It also produces the same image if saved to disk.

same image works with other nets, just no with openpose.

jinwonkim93 commented 1 year ago

Have you check your image? @depyronick

what do you mean by that?

image = base64_to_pil('...base64stringhere') can you check if this is valid image?

Yes.

Base 64 Image and base64_to_pil returns: <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=480x600 at 0x7F309E68BFA0>. It also produces the same image if saved to disk.

same image works with other nets, just no with openpose.

well i tried your code. i am not sure if you use same weight with lllyasviel, it worked.

depyronick commented 1 year ago

Have you check your image? @depyronick

what do you mean by that?

image = base64_to_pil('...base64stringhere') can you check if this is valid image?

Yes. Base 64 Image and base64_to_pil returns: <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=480x600 at 0x7F309E68BFA0>. It also produces the same image if saved to disk. same image works with other nets, just no with openpose.

well i tried your code. i am not sure if you use same weight with lllyasviel, it worked.

Interesting.

I am using annotators from

https://huggingface.co/lllyasviel/ControlNet

and ControlNetModel from

https://huggingface.co/fusing/stable-diffusion-v1-5-controlnet-openpose controlnets/openpose

can you pleas share the code that you were able to make it work?

jinwonkim93 commented 1 year ago

https://huggingface.co/lllyasviel/ControlNet

from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from controlnet_aux import OpenposeDetector
from controlnet_aux.open_pose import Body
import torch

def base64_to_pil(base64_image_data: str):
    return Image.open(BytesIO(base64.b64decode(base64_image_data)))

image = base64_to_pil('...base64stringhere')

pipeline = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
    torch_dtype=torch.float16,
    local_files_only=True,
    controlnet=ControlNetModel.from_pretrained(
        "lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16),
    safety_checker=None
).to('cuda')

pipeline.scheduler = UniPCMultistepScheduler.from_config(
    pipeline.scheduler.config)

pipeline.enable_xformers_memory_efficient_attention()
pipeline.enable_model_cpu_offload()

body_model = Body('./models--lllyasviel--ControlNet/snapshots/e78a8c4a5052a238198043ee5c0cb44e22abb9f7/annotator/ckpts/body_pose_model.pth')
openpose = OpenposeDetector(body_model)
image = openpose(image)
output = pipeline(
    prompt="gundam",
    height=512,
    width=512,
    image=image
)
depyronick commented 1 year ago

https://huggingface.co/lllyasviel/ControlNet

from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from controlnet_aux import OpenposeDetector
from controlnet_aux.open_pose import Body
import torch

def base64_to_pil(base64_image_data: str):
    return Image.open(BytesIO(base64.b64decode(base64_image_data)))

image = base64_to_pil('...base64stringhere')

pipeline = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
    torch_dtype=torch.float16,
    local_files_only=True,
    controlnet=ControlNetModel.from_pretrained(
        "lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16),
    safety_checker=None
).to('cuda')

pipeline.scheduler = UniPCMultistepScheduler.from_config(
    pipeline.scheduler.config)

pipeline.enable_xformers_memory_efficient_attention()
pipeline.enable_model_cpu_offload()

body_model = Body('./models--lllyasviel--ControlNet/snapshots/e78a8c4a5052a238198043ee5c0cb44e22abb9f7/annotator/ckpts/body_pose_model.pth')
openpose = OpenposeDetector(body_model)
image = openpose(image)
output = pipeline(
    prompt="gundam",
    height=512,
    width=512,
    image=image
)

what's your cv2 version?

jinwonkim93 commented 1 year ago

https://huggingface.co/lllyasviel/ControlNet

from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from controlnet_aux import OpenposeDetector
from controlnet_aux.open_pose import Body
import torch

def base64_to_pil(base64_image_data: str):
    return Image.open(BytesIO(base64.b64decode(base64_image_data)))

image = base64_to_pil('...base64stringhere')

pipeline = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
    torch_dtype=torch.float16,
    local_files_only=True,
    controlnet=ControlNetModel.from_pretrained(
        "lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16),
    safety_checker=None
).to('cuda')

pipeline.scheduler = UniPCMultistepScheduler.from_config(
    pipeline.scheduler.config)

pipeline.enable_xformers_memory_efficient_attention()
pipeline.enable_model_cpu_offload()

body_model = Body('./models--lllyasviel--ControlNet/snapshots/e78a8c4a5052a238198043ee5c0cb44e22abb9f7/annotator/ckpts/body_pose_model.pth')
openpose = OpenposeDetector(body_model)
image = openpose(image)
output = pipeline(
    prompt="gundam",
    height=512,
    width=512,
    image=image
)

what's your cv2 version?

opencv-python-headless==4.5.5.64