huggingface / course

The Hugging Face course on Transformers
https://huggingface.co/course
Apache License 2.0
2.27k stars 752 forks source link

Transformers, what can they do? #718

Open jzaba123 opened 3 months ago

jzaba123 commented 3 months ago

Hello,

Going via the training. Some small ideas for improvements.

#######################

Transformers, what can they do? https://huggingface.co/learn/nlp-course/en/chapter1/3

A) Current code sample is incomplete

from transformers import pipeline

classifier = pipeline("sentiment-analysis") classifier("I've been waiting for a HuggingFace course my whole life.")

CORRECT COULD BE B) from transformers import pipeline

classifier = pipeline("sentiment-analysis") result = classifier("I've been waiting for a HuggingFace course my whole life.") print(result)

C) Even better could be

import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Suppresses TensorFlow logs os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' # Disables oneDNN custom operations

from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification import warnings import torch

import tensorflow as tf tf.get_logger().setLevel('ERROR')

Set environment variable to disable oneDNN custom operations warning (specific to TensorFlow)

os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'

Suppress warnings

warnings.filterwarnings('ignore', category=DeprecationWarning)

Check if a GPU is available

device = 0 if torch.cuda.is_available() else -1

Load the tokenizer with the clean_up_tokenization_spaces parameter set

tokenizer = AutoTokenizer.from_pretrained( "distilbert/distilbert-base-uncased-finetuned-sst-2-english", clean_up_tokenization_spaces=True )

Load the model in PyTorch

model = AutoModelForSequenceClassification.from_pretrained( "distilbert/distilbert-base-uncased-finetuned-sst-2-english" )

Initialize the sentiment-analysis pipeline with the custom tokenizer and PyTorch model

classifier = pipeline( "sentiment-analysis", model=model, framework='pt', # Use PyTorch tokenizer=tokenizer, device=device # Use GPU if available, otherwise use CPU )

result = classifier( ["I've been waiting for a HuggingFace course my whole life.", "I hate this so much!"] )

print(result)

######################

https://huggingface.co/learn/nlp-course/en/chapter8/5 transformers-cli env

osanseviero commented 3 months ago

I moved the issue to the corresponding repo