In my dataset, there is a column called lang2, and there are 94 different classes in total, but the viewer says there are 83 values only. This issue only arises in the train split. The total number of values is also 94 in the test and dev columns, viewer tells the correct number of them.
Steps to reproduce the bug
from datasets import load_dataset
ds = load_dataset('speedcell4/opus-unigram2').unique('lang2')
for key, lang2 in ds.items():
print(key, len(lang2))
This script returns the following and tells that the train split has 94 values in the lang2 column.
train 94
dev 94
test 94
zero 5
Expected behavior
94 in the reviewer.
Environment info
Collecting environment information...
PyTorch version: 2.4.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: CentOS Linux release 8.2.2004 (Core) (x86_64)
GCC version: (GCC) 8.3.1 20191121 (Red Hat 8.3.1-5)
Clang version: Could not collect
CMake version: version 3.11.4
Libc version: glibc-2.28
Python version: 3.9.20 (main, Oct 3 2024, 07:27:41) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-4.18.0-193.28.1.el8_2.x86_64-x86_64-with-glibc2.28
Is CUDA available: True
CUDA runtime version: 12.2.140
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-SXM4-40GB
GPU 1: NVIDIA A100-SXM4-40GB
GPU 2: NVIDIA A100-SXM4-40GB
GPU 3: NVIDIA A100-SXM4-40GB
GPU 4: NVIDIA A100-SXM4-40GB
GPU 5: NVIDIA A100-SXM4-40GB
GPU 6: NVIDIA A100-SXM4-40GB
GPU 7: NVIDIA A100-SXM4-40GB
Nvidia driver version: 525.85.05
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
Describe the bug
In my dataset, there is a column called
lang2
, and there are 94 different classes in total, but the viewer says there are 83 values only. This issue only arises in thetrain
split. The total number of values is also 94 in thetest
anddev
columns, viewer tells the correct number of them.Steps to reproduce the bug
This script returns the following and tells that the
train
split has 94 values in thelang2
column.Expected behavior
94 in the reviewer.
Environment info
Collecting environment information... PyTorch version: 2.4.1+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A
OS: CentOS Linux release 8.2.2004 (Core) (x86_64) GCC version: (GCC) 8.3.1 20191121 (Red Hat 8.3.1-5) Clang version: Could not collect CMake version: version 3.11.4 Libc version: glibc-2.28
Python version: 3.9.20 (main, Oct 3 2024, 07:27:41) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-4.18.0-193.28.1.el8_2.x86_64-x86_64-with-glibc2.28 Is CUDA available: True CUDA runtime version: 12.2.140 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-40GB GPU 1: NVIDIA A100-SXM4-40GB GPU 2: NVIDIA A100-SXM4-40GB GPU 3: NVIDIA A100-SXM4-40GB GPU 4: NVIDIA A100-SXM4-40GB GPU 5: NVIDIA A100-SXM4-40GB GPU 6: NVIDIA A100-SXM4-40GB GPU 7: NVIDIA A100-SXM4-40GB
Nvidia driver version: 525.85.05 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True
CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Thread(s) per core: 1 Core(s) per socket: 32 Socket(s): 2 NUMA node(s): 4 Vendor ID: AuthenticAMD CPU family: 23 Model: 49 Model name: AMD EPYC 7542 32-Core Processor Stepping: 0 CPU MHz: 3389.114 BogoMIPS: 5789.40 Virtualization: AMD-V L1d cache: 32K L1i cache: 32K L2 cache: 512K L3 cache: 16384K NUMA node0 CPU(s): 0-15 NUMA node1 CPU(s): 16-31 NUMA node2 CPU(s): 32-47 NUMA node3 CPU(s): 48-63 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip rdpid overflow_recov succor smca
Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] torch==2.4.1+cu121 [pip3] torchaudio==2.4.1+cu121 [pip3] torchdevice==0.1.1 [pip3] torchglyph==0.3.2 [pip3] torchmetrics==1.5.0 [pip3] torchrua==0.5.1 [pip3] torchvision==0.19.1+cu121 [pip3] triton==3.0.0 [pip3] datasets==3.0.1 [conda] numpy 1.26.4 pypi_0 pypi [conda] torch 2.4.1+cu121 pypi_0 pypi [conda] torchaudio 2.4.1+cu121 pypi_0 pypi [conda] torchdevice 0.1.1 pypi_0 pypi [conda] torchglyph 0.3.2 pypi_0 pypi [conda] torchmetrics 1.5.0 pypi_0 pypi [conda] torchrua 0.5.1 pypi_0 pypi [conda] torchvision 0.19.1+cu121 pypi_0 pypi [conda] triton 3.0.0 pypi_0 pypi