Open wonhyeongseo opened 1 year ago
Hey there๐ thanks for your work. As mentionned in Discord we don't support other languages for this course for now contrary to the transformer course.
However, what we can do is I can create a moon-ci-docs.huggingface.co link that will allow you to share to people who want to follow the course in Korean (and also see what the course looks like).
Currently there's an error in the Build PR documentation so I can't provide you this link (check the Failing error, from what I see is because you don't have a table of contents
Have a nice day ๐ค
Hi!
Let's bring the reinforcement learning course to all the Korean-speaking community ๐ (currently 9 out of 77 complete)
Would you want to translate? Please follow the ๐ค TRANSLATING guide. Here is a list of the files ready for translation. Let us know in this issue if you'd like to translate any, and we'll add your name to the list.
Some notes:
ko
inside the source folder.ko/_toctree.yml
; please follow the order of the English version.์๋ ํ์ธ์!
ํ๊ตญ์ด๋ฅผ ์ฌ์ฉํ๋ ๋ชจ๋๊ฐ ๊ฐํํ์ต ์ฝ์ค๋ฅผ ์ฝ์ ์ ์๊ฒ ํด๋ณด์์ ๐
๋ฒ์ญ์ ์ฐธ์ฌํ๊ณ ์ถ์ผ์ ๊ฐ์? ๐ค ๋ฒ์ญ ๊ฐ์ด๋๋ฅผ ๋จผ์ ์ฝ์ด๋ณด์๊ธฐ ๋ฐ๋๋๋ค. ๋ ๋ถ๋ถ์ ๋ฒ์ญํด์ผํ ํ์ผ๋ค์ด ๋์ด๋์ด ์์ต๋๋ค. ์์ ํ๊ณ ๊ณ์ ํ์ผ์ด ์๋ค๋ฉด ์ฌ๊ธฐ์ ๊ฐ๋จํ ์๋ ค์ฃผ์ธ์. ์ค๋ณต๋์ง ์๋๋ก
์์ ์ค
์ผ๋ก ํ์ํด๋๊ฒ์.์ฐธ๊ณ ์ฌํญ:
๊ธฐ์ ๋ฌธ์์ด์ง๋ง (์น๊ตฌ์๊ฒ ์ค๋ช ๋ฃ๋ฏ์ด) ์ฝ๊ฒ ์ฝํ๋ฉด ์ข๊ฒ ์ต๋๋ค. ์กด๋๋ง ๋ก ์จ์ฃผ์๋ฉด ๊ฐ์ฌํ๊ฒ ์ต๋๋ค.
์ฑ๋ณ์ ์ผ๋ถ ์ธ์ด(์คํ์ธ์ด, ํ๋์ค์ด ๋ฑ)์๋ง ์ ์ฉ๋๋ ์ฌํญ์ผ๋ก, ํ๊ตญ์ด์ ๊ฒฝ์ฐ ๋ฒ์ญ๊ธฐ๋ฅผ ์ฌ์ฉํ์ ํ ๋ฌธ์ฅ ๊ธฐํธ์ ์กฐ์ฌ ๋ฑ์ด ์๋ง๋์ง ํ์ธํด์ฃผ์๊ธฐ ๋ฐ๋๋๋ค.
์์ค ํด๋ ์๋
ko
ํด๋์ ๋ฒ์ญ๋ณธ์ ๋ฃ์ด์ฃผ์ธ์.๋ชฉ์ฐจ(
ko/_toctree.yml
)๋ ํจ๊ป ์ ๋ฐ์ดํธํด์ฃผ์ธ์. ์์ด ๋ชฉ์ฐจ์ ์์๊ฐ ๋์ผํด์ผ ํฉ๋๋ค.๋ชจ๋ ๋ง์น์ จ๋ค๋ฉด, ๊ธฐ๋ก์ด ์ํํ๋๋ก PR์ ์ฌ์ค ๋ ํ์ฌ ์ด์(``)๋ฅผ ๋ด์ฉ์ ๋ฃ์ด์ฃผ์๊ธฐ ๋ฐ๋๋๋ค. ๋ฆฌ๋ทฐ ์์ฒญ์ @simoninithomas ๋๊ป ์์ฒญํด์ฃผ์ธ์.
๐ ์ปค๋ฎค๋ํฐ์ ๋ง์๊ป ํ๋ณดํด์ฃผ์๊ธฐ ๋ฐ๋๋๋ค! ๐ค ํฌ๋ผ์ ์ฌ๋ฆฌ์ ๋ ์ข์์.
[ ] Unit 0. Welcome to the course
[ ] Unit 1. Introduction to Deep Reinforcement Learning
[ ] Bonus Unit 1. Introduction to Deep Reinforcement Learning with Huggy
[ ] Live 1. How the course work, Q&A, and playing with Huggy
[ ] Unit 2. Introduction to Q-Learning
[ ] Unit 3. Deep Q-Learning with Atari Games
[ ] Bonus Unit 2. Automatic Hyperparameter Tuning with Optuna
[ ] Unit 4. Policy Gradient with PyTorch
[ ] Unit 5. Introduction to Unity ML-Agents
[ ] Unit 6. Actor Critic methods with Robotics environments
[ ] Unit 7. Introduction to Multi-Agents and AI vs AI
[ ] Unit 8. Part 1 Proximal Policy Optimization (PPO)
[ ] Unit 8. Part 2 Proximal Policy Optimization (PPO) with Doom
[ ] Bonus Unit 3. Advanced Topics in Reinforcement Learning