hughperkins / tf-coriander

OpenCL 1.2 implementation for Tensorflow
Apache License 2.0
791 stars 90 forks source link

LLVM Error #76

Open akashdeepjassal opened 6 years ago

akashdeepjassal commented 6 years ago

Getting this error

'''
A Recurrent Neural Network (LSTM) implementation example using TensorFlow library.
This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/)
Long Short Term Memory paper: http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
'''

from __future__ import print_function

import tensorflow as tf
from tensorflow.python.ops import rnn, rnn_cell

# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

'''
To classify images using a recurrent neural network, we consider every image
row as a sequence of pixels. Because MNIST image shape is 28*28px, we will then
handle 28 sequences of 28 steps for every sample.
'''

# Parameters
learning_rate = 0.001
training_iters = 100000
batch_size = 128
display_step = 10

# Network Parameters
n_input = 28 # MNIST data input (img shape: 28*28)
n_steps = 28 # timesteps
n_hidden = 128 # hidden layer num of features
n_classes = 10 # MNIST total classes (0-9 digits)

with tf.device('/gpu:0'):
    # tf Graph input
    x = tf.placeholder("float", [None, n_steps, n_input])
    y = tf.placeholder("float", [None, n_classes])

    # Define weights
    weights = {
        'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
    }
    biases = {
        'out': tf.Variable(tf.random_normal([n_classes]))
    }

    def RNN(x, weights, biases):

        # Prepare data shape to match `rnn` function requirements
        # Current data input shape: (batch_size, n_steps, n_input)
        # Required shape: 'n_steps' tensors list of shape (batch_size, n_input)

        # Permuting batch_size and n_steps
        x = tf.transpose(x, [1, 0, 2])
        # Reshaping to (n_steps*batch_size, n_input)
        x = tf.reshape(x, [-1, n_input])
        # Split to get a list of 'n_steps' tensors of shape (batch_size, n_input)
        x = tf.split(0, n_steps, x)

        # Define a lstm cell with tensorflow
        lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)

        # Get lstm cell output
        outputs, states = rnn.rnn(lstm_cell, x, dtype=tf.float32)

        # Linear activation, using rnn inner loop last output
        return tf.matmul(outputs[-1], weights['out']) + biases['out']

    pred = RNN(x, weights, biases)

    # Define loss and optimizer
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

    # Evaluate model
    correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

    # Initializing the variables
    init = tf.initialize_all_variables()

    # Launch the graph
    with tf.Session() as sess:
        sess.run(init)
        step = 1
        # Keep training until reach max iterations
        while step * batch_size < training_iters:
            batch_x, batch_y = mnist.train.next_batch(batch_size)
            # Reshape data to get 28 seq of 28 elements
            batch_x = batch_x.reshape((batch_size, n_steps, n_input))
            # Run optimization op (backprop)
            sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
            if step % display_step == 0:
                # Calculate batch accuracy
                acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
                # Calculate batch loss
                loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
                print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
                      "{:.6f}".format(loss) + ", Training Accuracy= " + \
                      "{:.5f}".format(acc))
            step += 1
        print("Optimization Finished!")

        # Calculate accuracy for 128 mnist test images
        test_len = 128
        test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
        test_label = mnist.test.labels[:test_len]
        print("Testing Accuracy:", \
            sess.run(accuracy, feed_dict={x: test_data, y: test_label}))

: CommandLine Error: Option 'help-list' registered more than once! LLVM ERROR: inconsistency in registered CommandLine options

aislancesar commented 6 years ago

I'm getting the same problem. It happens when I try to stance a tensorflow's Session.

import tensorflow as tf sess = tf.Session()

Then I get the same error.

suwhs commented 5 years ago

any solution?