Open Gabriellamin opened 5 years ago
I notice that your train_batch_size is set as 4, which is too small. In our experiment, the batch size is set as 32 by default. Maybe you should tray to increase the batch size to see if the performance can be improved.
这位同学说用了相同的参数效果也是如此https://github.com/huminghao16/RE3QA/issues/2#issuecomment-523302418
@Gabriellamin Were you able to reproduce the reported results using batch size of 32?
Hi Gabriellamin. I have fixed some bugs in the code! Could you please try again to see if you can reproduce the results?
Apologies for the inconvenience!
I've trained the model with batch size 32 on 2 gpus with a gradient acc step of 4 on SQuAD-document. Here is what I've got.
Ranker, type: distill, step: 0, map: 0.491, mrr: 0.510, top_1: 0.312, top_3: 0.605, top_5: 0.815, top_7: 0.935, retrieval_rate: 0.468
Ranker, type: test, step: 0, map: 0.396, mrr: 0.415, top_1: 0.231, top_3: 0.468, top_5: 0.671, top_7: 0.804, retrieval_rate: 0.345
Ranker, step: 10911, map: 0.888, mrr: 0.907, top_1: 0.872, top_3: 0.939, top_5: 0.956, top_7: 0.962 Reader, step: 10911, em: 46.991, f1: 53.054
Ranker, type: distill, step: 10911, map: 0.952, mrr: 0.964, top_1: 0.941, top_3: 0.986, top_5: 0.997, top_7: 0.999, retrieval_rate: 0.468
Ranker, type: test, step: 10911, map: 0.888, mrr: 0.907, top_1: 0.872, top_3: 0.939, top_5: 0.956, top_7: 0.962, retrieval_rate: 0.345
Ranker, step: 21822, map: 0.891, mrr: 0.909, top_1: 0.876, top_3: 0.940, top_5: 0.957, top_7: 0.962 Reader, step: 21822, em: 76.500, f1: 83.243
Ranker, type: test, step: 21822, map: 0.886, mrr: 0.913, top_1: 0.874, top_3: 0.943, top_5: 0.968, top_7: 0.976, retrieval_rate: 0.223
Reader, type: test, step: 21822, em: 77.332, f1: 84.276
Reader em: 43.321, f1: 65.053.The em is lower nearly 30 percentage and the f1 is lower nearly 20 percentage than the paper's result.That's why?I have only changed the batch and n_para_train. I display the performance.txt and parameter.txt and the log information below. performance.txt Ranker, type: distill, step: 0, map: 0.491, mrr: 0.510, top_1: 0.312, top_3: 0.605, top_5: 0.815, top_7: 0.935, retrieval_rate: 0.468
Ranker, type: test, step: 0, map: 0.396, mrr: 0.415, top_1: 0.231, top_3: 0.468, top_5: 0.671, top_7: 0.804, retrieval_rate: 0.345
Ranker, type: distill, step: 0, map: 0.767, mrr: 0.774, top_1: 0.621, top_3: 0.934, top_5: 0.995, top_7: 0.999, retrieval_rate: 0.915
Ranker, type: test, step: 0, map: 0.690, mrr: 0.696, top_1: 0.546, top_3: 0.854, top_5: 0.916, top_7: 0.921, retrieval_rate: 0.894
Ranker, type: distill, step: 0, map: 0.767, mrr: 0.774, top_1: 0.621, top_3: 0.934, top_5: 0.995, top_7: 0.999, retrieval_rate: 0.915
Ranker, type: test, step: 0, map: 0.690, mrr: 0.696, top_1: 0.546, top_3: 0.854, top_5: 0.916, top_7: 0.921, retrieval_rate: 0.894
Ranker, type: distill, step: 0, map: 0.974, mrr: 0.974, top_1: 0.951, top_3: 0.999, top_5: 1.000, top_7: 1.000, retrieval_rate: 0.953
Ranker, type: test, step: 0, map: 0.836, mrr: 0.837, top_1: 0.813, top_3: 0.862, top_5: 0.864, top_7: 0.864, retrieval_rate: 0.929
Ranker, type: distill, step: 0, map: 0.767, mrr: 0.774, top_1: 0.621, top_3: 0.934, top_5: 0.995, top_7: 0.999, retrieval_rate: 0.915
Ranker, type: test, step: 0, map: 0.396, mrr: 0.415, top_1: 0.231, top_3: 0.468, top_5: 0.671, top_7: 0.804, retrieval_rate: 0.345
Ranker, step: 70551, map: 0.866, mrr: 0.890, top_1: 0.841, top_3: 0.935, top_5: 0.955, top_7: 0.961 Reader, step: 70551, em: 24.021, f1: 39.743
Ranker, type: distill, step: 70551, map: 0.979, mrr: 0.983, top_1: 0.969, top_3: 0.999, top_5: 1.000, top_7: 1.000, retrieval_rate: 0.915
Ranker, type: test, step: 70551, map: 0.866, mrr: 0.890, top_1: 0.841, top_3: 0.935, top_5: 0.955, top_7: 0.961, retrieval_rate: 0.345
Ranker, step: 141102, map: 0.873, mrr: 0.894, top_1: 0.850, top_3: 0.935, top_5: 0.955, top_7: 0.961 Reader, step: 141102, em: 42.810, f1: 64.606
Ranker, type: test, step: 141102, map: 0.857, mrr: 0.890, top_1: 0.837, top_3: 0.933, top_5: 0.963, top_7: 0.972, retrieval_rate: 0.223
Reader, type: test, step: 141102, em: 43.321, f1: 65.053
参数设置为: ablate_type: none bert_config_file: ../../data/bert-base-uncased/bert_config.json data_dir: ../../data/squad1 data_parallel: False debug: False do_lower_case: True do_predict: True do_predict_open: False do_train: True doc_stride: 128 down_sample: False filter_type: em fp16: False gradient_accumulation_steps: 1 init_checkpoint: ../../data/bert-base-uncased/pytorch_model.bin learning_rate: 3e-05 length_heuristic: 0.05 local_rank: -1 loss_scale: 128 max_answer_length: 30 max_query_length: 64 max_seq_length: 384 n_best_size_rank: 4 n_best_size_read: 20 n_para_predict: 10 n_para_train: 4 no_cuda: False num_hidden_rank: 3 num_train_epochs: 2.0 optimize_on_cpu: False output_dir: out/squad_doc/011 pred_rank_weight: 1.4 pred_rerank_weight: 1.4 predict_batch_size: 4 predict_file: dev-v1.1.json rank_pred_file: None rank_train_file: None sample_rate: 1.0 seed: 42 train_batch_size: 4 train_file: train-v1.1.json verbose_logging: False vocab_file: ../../data/bert-base-uncased/vocab.txt warmup_proportion: 0.05 log信息为: root@9953e6052f70:/workspace/pythonprogram_zm/RE3QA/bert# python3 run_squad_document_full_e2e.py 08/21/2019 09:12:33 - INFO - main - output_dir: out/squad_doc/011 08/21/2019 09:12:33 - INFO - main - torch_version: 0.4.1 device: cuda n_gpu: 1, distributed training: False, 16-bits training: False 08/21/2019 09:12:33 - INFO - main - Preparing model 08/21/2019 09:12:36 - INFO - main - Loading model from pretrained checkpoint: ../../data/bert-base-uncased/pytorch_model.bin 08/21/2019 09:12:38 - INFO - main - Weights of BertForRankingAndReadingAndReranking not initialized from pretrained model: ['rank_affine.weight', 'rank_affine.bias', 'rank_dense.weight', 'rank_dense.bias', 'rank_classifier.weight', 'rank_classifier.bias', 'read_affine.weight', 'read_affine.bias', 'rerank_affine.weight', 'rerank_affine.bias', 'rerank_dense.weight', 'rerank_dense.bias', 'rerank_classifier.weight', 'rerank_classifier.bias'] 08/21/2019 09:12:38 - INFO - main - Weights from pretrained model not used in BertForRankingAndReadingAndReranking: ['cls.predictions.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.gamma', 'cls.predictions.transform.LayerNorm.beta', 'cls.predictions.decoder.weight', 'cls.seq_relationship.weight', 'cls.seq_relationship.bias'] 08/21/2019 09:12:41 - INFO - main - Preparing training Recall of answer existence in documents: 0.922 Average length of documents: 4986.023 Average pruned length of documents: 484.074 08/21/2019 09:13:15 - INFO - main - Processing features: 5000 08/21/2019 09:13:32 - INFO - main - Processing features: 10000 08/21/2019 09:13:49 - INFO - main - Processing features: 15000 08/21/2019 09:14:08 - INFO - main - Processing features: 20000 此处省略 08/21/2019 09:29:23 - INFO - main - Processing features: 280000 08/21/2019 09:29:40 - INFO - main - Processing features: 285000 08/21/2019 09:29:56 - INFO - main - Processing features: 290000 08/21/2019 09:30:13 - INFO - main - Processing features: 295000 08/21/2019 09:30:30 - INFO - main - Processing features: 300000 08/21/2019 09:30:46 - INFO - main - Processing features: 305000 08/21/2019 09:31:30 - INFO - main - Filtering features randomly 08/21/2019 09:31:31 - INFO - main - Num orig examples = 87599 08/21/2019 09:31:31 - INFO - main - Num split features = 308278 08/21/2019 09:31:31 - INFO - main - Num split filtered features = 219303 08/21/2019 09:31:31 - INFO - main - Batch size for ranker = 22 08/21/2019 09:31:31 - INFO - main - Batch size for reader = 16 08/21/2019 09:31:31 - INFO - main - Num steps = 27412 08/21/2019 09:31:40 - INFO - main - Preparing evaluation Recall of answer existence in documents: 0.923 Average length of documents: 5287.083 Average pruned length of documents: 509.538 08/21/2019 09:32:00 - INFO - main - Processing features: 5000 08/21/2019 09:32:18 - INFO - main - Processing features: 10000 08/21/2019 09:32:39 - INFO - main - Processing features: 15000 08/21/2019 09:32:55 - INFO - main - Processing features: 20000 08/21/2019 09:33:11 - INFO - main - Processing features: 25000 08/21/2019 09:33:28 - INFO - main - Processing features: 30000 08/21/2019 09:33:44 - INFO - main - Processing features: 35000 08/21/2019 09:34:05 - INFO - main - Filtering features randomly 08/21/2019 09:34:05 - INFO - main - Num orig examples = 10570 08/21/2019 09:34:05 - INFO - main - Num split features = 39769 08/21/2019 09:34:05 - INFO - main - Num split filtered features = 35546 08/21/2019 09:34:05 - INFO - main - Batch size for ranker = 64 08/21/2019 09:34:05 - INFO - main - Batch size for reader = 32 08/21/2019 09:34:06 - INFO - main - Running training distillation 08/21/2019 09:34:06 - INFO - main - Processing example: 0 08/21/2019 09:37:52 - INFO - main - Processing example: 55000 08/21/2019 09:41:37 - INFO - main - Processing example: 110000 08/21/2019 09:45:23 - INFO - main - Processing example: 165000 08/21/2019 09:49:08 - INFO - main - Processing example: 220000 08/21/2019 09:52:55 - INFO - main - Processing example: 275000 08/21/2019 09:55:30 - INFO - main - Reconstruct training data at distill_4paras_4best.pkl 08/21/2019 09:55:30 - INFO - main - Filtering features based on: out/squad_doc/011/distill_4paras_4best.pkl 08/21/2019 10:05:21 - INFO - main - Num orig examples = 87599 08/21/2019 10:05:21 - INFO - main - Num split features = 308278 08/21/2019 10:05:21 - INFO - main - Num split filtered features = 282203 08/21/2019 10:05:21 - INFO - main - Batch size for ranker = 17 08/21/2019 10:05:21 - INFO - main - Batch size for reader = 16 08/21/2019 10:05:21 - INFO - main - Num steps = 35275 08/21/2019 10:05:31 - INFO - main - Running eval distillation 08/21/2019 10:05:31 - INFO - main - Processing example: 0 08/21/2019 10:08:09 - INFO - main - Reconstruct eval data at test_4paras_4best.pkl 08/21/2019 10:08:09 - INFO - main - Filtering features based on: out/squad_doc/011/test_4paras_4best.pkl 08/21/2019 10:08:09 - INFO - main - Num orig examples = 10570 08/21/2019 10:08:09 - INFO - main - Num split features = 39769 08/21/2019 10:08:09 - INFO - main - Num split filtered features = 35546 08/21/2019 10:08:09 - INFO - main - Batch size for ranker = 64 08/21/2019 10:08:09 - INFO - main - Batch size for reader = 32 08/21/2019 10:08:10 - INFO - main - Preparing optimizer 08/21/2019 10:08:10 - INFO - main - Running training 08/21/2019 10:08:10 - INFO - main - Epoch: 1 Traceback (most recent call last): File "run_squad_document_full_e2e.py", line 914, in
main()
File "run_squad_document_full_e2e.py", line 857, in main
save_path, best_f1, epoch)
File "run_squad_document_full_e2e.py", line 491, in run_train_epoch
input_ids=input_ids, token_type_ids=segment_ids)
File "/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py", line 477, in call
result = self.forward(*input, kwargs)
File "/workspace/pythonprogram_zm/RE3QA/bert/custom_modeling.py", line 225, in forward
all_encoderlayers, = self.bert(self.num_hidden_read, input_ids, token_type_ids, attention_mask)
File "/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py", line 477, in call
result = self.forward(*input, *kwargs)
File "/workspace/pythonprogram_zm/RE3QA/bert/custom_modeling.py", line 165, in forward
all_encoder_layers = self.encoder(num_hidden_stop, embedding_output, extended_attention_mask)
File "/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py", line 477, in call
result = self.forward(input, kwargs)
File "/workspace/pythonprogram_zm/RE3QA/bert/custom_modeling.py", line 130, in forward
hidden_states = layer_module(hidden_states, attention_mask)
File "/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py", line 477, in call
result = self.forward(*input, kwargs)
File "/workspace/pythonprogram_zm/RE3QA/bert/modeling.py", line 274, in forward
layer_output = self.output(intermediate_output, attention_output)
File "/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py", line 477, in call
result = self.forward(*input, *kwargs)
File "/workspace/pythonprogram_zm/RE3QA/bert/modeling.py", line 260, in forward
hidden_states = self.LayerNorm(hidden_states + input_tensor)
File "/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py", line 477, in call
result = self.forward(input, kwargs)
File "/workspace/pythonprogram_zm/RE3QA/bert/modeling.py", line 127, in forward
return self.gamma * x + self.beta
RuntimeError: CUDA error: out of memory
root@9953e6052f70:/workspace/pythonprogram_zm/RE3QA/bert# ls
pycache custom_modeling.py modeling.py optimization.py out run_squad_document_full_e2e.py run_triviaqa_wiki_full_e2e.py tokenization.py
root@9953e6052f70:/workspace/pythonprogram_zm/RE3QA/bert# vim run_squad_document_full_e2e.py
root@9953e6052f70:/workspace/pythonprogram_zm/RE3QA/bert# python3 run_squad_document_full_e2e.py
08/21/2019 10:41:35 - INFO - main - output_dir: out/squad_doc/011
08/21/2019 10:41:35 - INFO - main - torch_version: 0.4.1 device: cuda n_gpu: 1, distributed training: False, 16-bits training: False
08/21/2019 10:41:35 - INFO - main - Preparing model
08/21/2019 10:41:38 - INFO - main - Loading model from pretrained checkpoint: ../../data/bert-base-uncased/pytorch_model.bin
08/21/2019 10:41:39 - INFO - main - Weights of BertForRankingAndReadingAndReranking not initialized from pretrained model: ['rank_affine.weight', 'rank_affine.bias', 'rank_dense.weight', 'rank_dense.bias', 'rank_classifier.weight', 'rank_classifier.bias', 'read_affine.weight', 'read_affine.bias', 'rerank_affine.weight', 'rerank_affine.bias', 'rerank_dense.weight', 'rerank_dense.bias', 'rerank_classifier.weight', 'rerank_classifier.bias']
08/21/2019 10:41:39 - INFO - main - Weights from pretrained model not used in BertForRankingAndReadingAndReranking: ['cls.predictions.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.gamma', 'cls.predictions.transform.LayerNorm.beta', 'cls.predictions.decoder.weight', 'cls.seq_relationship.weight', 'cls.seq_relationship.bias']
08/21/2019 10:41:41 - INFO - main - Preparing training
08/21/2019 10:41:44 - INFO - main - Loading examples from: ../../data/squad1/train_4paras_examples.pkl
08/21/2019 10:42:33 - INFO - main - Loading features from: ../../data/squad1/train_4paras_384max_128stride_features.pkl
08/21/2019 10:42:33 - INFO - main - Filtering features randomly
08/21/2019 10:42:34 - INFO - main - Num orig examples = 87599
08/21/2019 10:42:34 - INFO - main - Num split features = 308278
08/21/2019 10:42:34 - INFO - main - Num split filtered features = 219303
08/21/2019 10:42:34 - INFO - main - Batch size for ranker = 11
08/21/2019 10:42:34 - INFO - main - Batch size for reader = 8
08/21/2019 10:42:34 - INFO - main - Num steps = 54825
08/21/2019 10:42:44 - INFO - main - Preparing evaluation
08/21/2019 10:42:48 - INFO - main - Loading examples from: ../../data/squad1/eval_4paras_examples.pkl
08/21/2019 10:42:53 - INFO - main - Loading features from: ../../data/squad1/eval_4paras_384max_128stride_features.pkl
08/21/2019 10:42:53 - INFO - main - Filtering features randomly
08/21/2019 10:42:53 - INFO - main - Num orig examples = 10570
08/21/2019 10:42:53 - INFO - main - Num split features = 39769
08/21/2019 10:42:53 - INFO - main - Num split filtered features = 35546
08/21/2019 10:42:53 - INFO - main - Batch size for ranker = 16
08/21/2019 10:42:53 - INFO - main - Batch size for reader = 8
08/21/2019 10:42:54 - INFO - main - Running training distillation
08/21/2019 10:42:54 - INFO - main - Processing example: 0
08/21/2019 10:46:48 - INFO - main - Processing example: 55000
08/21/2019 10:50:43 - INFO - main - Processing example: 110000
08/21/2019 10:54:37 - INFO - main - Processing example: 165000
08/21/2019 10:58:31 - INFO - main - Processing example: 220000
08/21/2019 11:02:33 - INFO - main - Processing example: 275000
08/21/2019 11:05:08 - INFO - main - Reconstruct training data at distill_4paras_4best.pkl
08/21/2019 11:05:08 - INFO - main - Filtering features based on: out/squad_doc/011/distill_4paras_4best.pkl
08/21/2019 11:15:03 - INFO - main - Num orig examples = 87599
08/21/2019 11:15:03 - INFO - main - Num split features = 308278
08/21/2019 11:15:03 - INFO - main - Num split filtered features = 282203
08/21/2019 11:15:03 - INFO - main - Batch size for ranker = 8
08/21/2019 11:15:03 - INFO - main - Batch size for reader = 8
08/21/2019 11:15:03 - INFO - main - Num steps = 70550
08/21/2019 11:15:15 - INFO - main - Running eval distillation
08/21/2019 11:15:15 - INFO - main - Processing example: 0
08/21/2019 11:15:57 - INFO - main - Processing example: 10000
08/21/2019 11:16:39 - INFO - main - Processing example: 20000
08/21/2019 11:17:21 - INFO - main - Processing example: 30000
08/21/2019 11:18:04 - INFO - main - Reconstruct eval data at test_4paras_4best.pkl
08/21/2019 11:18:04 - INFO - main - Filtering features based on: out/squad_doc/011/test_4paras_4best.pkl
08/21/2019 11:18:04 - INFO - main - Num orig examples = 10570
08/21/2019 11:18:04 - INFO - main - Num split features = 39769
08/21/2019 11:18:04 - INFO - main - Num split filtered features = 35546
08/21/2019 11:18:04 - INFO - main - Batch size for ranker = 16
08/21/2019 11:18:04 - INFO - main - Batch size for reader = 8
08/21/2019 11:18:06 - INFO - main - Preparing optimizer
08/21/2019 11:18:06 - INFO - main - Running training
08/21/2019 11:18:06 - INFO - main - Epoch: 1
Traceback (most recent call last):
File "run_squad_document_full_e2e.py", line 914, in
main()
File "run_squad_document_full_e2e.py", line 857, in main
save_path, best_f1, epoch)
File "run_squad_document_full_e2e.py", line 491, in run_train_epoch
input_ids=input_ids, token_type_ids=segment_ids)
File "/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py", line 477, in call
result = self.forward(*input, kwargs)
File "/workspace/pythonprogram_zm/RE3QA/bert/custom_modeling.py", line 225, in forward
all_encoderlayers, = self.bert(self.num_hidden_read, input_ids, token_type_ids, attention_mask)
File "/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py", line 477, in call
result = self.forward(*input, *kwargs)
File "/workspace/pythonprogram_zm/RE3QA/bert/custom_modeling.py", line 165, in forward
all_encoder_layers = self.encoder(num_hidden_stop, embedding_output, extended_attention_mask)
File "/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py", line 477, in call
result = self.forward(input, kwargs)
File "/workspace/pythonprogram_zm/RE3QA/bert/custom_modeling.py", line 130, in forward
hidden_states = layer_module(hidden_states, attention_mask)
File "/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py", line 477, in call
result = self.forward(*input, kwargs)
File "/workspace/pythonprogram_zm/RE3QA/bert/modeling.py", line 272, in forward
attention_output = self.attention(hidden_states, attention_mask)
File "/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py", line 477, in call
result = self.forward(*input, *kwargs)
File "/workspace/pythonprogram_zm/RE3QA/bert/modeling.py", line 233, in forward
self_output = self.self(input_tensor, attention_mask)
File "/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py", line 477, in call
result = self.forward(input, kwargs)
File "/workspace/pythonprogram_zm/RE3QA/bert/modeling.py", line 194, in forward
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
RuntimeError: CUDA error: out of memory
root@9953e6052f70:/workspace/pythonprogram_zm/RE3QA/bert# vim run_squad_document_full_e2e.py
root@9953e6052f70:/workspace/pythonprogram_zm/RE3QA/bert# python3 run_squad_document_full_e2e.py
08/21/2019 11:24:04 - INFO - main - output_dir: out/squad_doc/011
08/21/2019 11:24:04 - INFO - main - torch_version: 0.4.1 device: cuda n_gpu: 1, distributed training: False, 16-bits training: False
08/21/2019 11:24:04 - INFO - main - Preparing model
08/21/2019 11:24:07 - INFO - main - Loading model from pretrained checkpoint: ../../data/bert-base-uncased/pytorch_model.bin
08/21/2019 11:24:07 - INFO - main - Weights of BertForRankingAndReadingAndReranking not initialized from pretrained model: ['rank_affine.bias', 'rank_affine.weight', 'rank_dense.bias', 'rank_dense.weight', 'rank_classifier.bias', 'rank_classifier.weight', 'read_affine.bias', 'read_affine.weight', 'rerank_affine.bias', 'rerank_affine.weight', 'rerank_dense.bias', 'rerank_dense.weight', 'rerank_classifier.bias', 'rerank_classifier.weight']
08/21/2019 11:24:07 - INFO - main - Weights from pretrained model not used in BertForRankingAndReadingAndReranking: ['cls.predictions.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.gamma', 'cls.predictions.transform.LayerNorm.beta', 'cls.predictions.decoder.weight', 'cls.seq_relationship.weight', 'cls.seq_relationship.bias']
08/21/2019 11:24:10 - INFO - main - Preparing training
Recall of answer existence in documents: 0.859
Average length of documents: 4986.023
Average pruned length of documents: 239.409
08/21/2019 11:24:51 - INFO - main - Processing features: 5000
08/21/2019 11:25:15 - INFO - main - Processing features: 10000
08/21/2019 11:25:37 - INFO - main - Processing features: 15000
08/21/2019 11:25:59 - INFO - main - Processing features: 20000
此处省略
08/21/2019 11:32:09 - INFO - main - Processing features: 95000
08/21/2019 11:32:34 - INFO - main - Processing features: 100000
08/21/2019 11:32:59 - INFO - main - Processing features: 105000
08/21/2019 11:33:24 - INFO - main - Processing features: 110000
08/21/2019 11:33:54 - INFO - main - Filtering features randomly
08/21/2019 11:33:55 - INFO - main - Num orig examples = 87599
08/21/2019 11:33:55 - INFO - main - Num split features = 113423
08/21/2019 11:33:55 - INFO - main - Num split filtered features = 98764
08/21/2019 11:33:55 - INFO - main - Batch size for ranker = 4
08/21/2019 11:33:55 - INFO - main - Batch size for reader = 4
08/21/2019 11:33:55 - INFO - main - Num steps = 49382
08/21/2019 11:33:59 - INFO - main - Preparing evaluation
Recall of answer existence in documents: 0.864
Average length of documents: 5287.083
Average pruned length of documents: 252.107
08/21/2019 11:34:26 - INFO - main - Processing features: 5000
08/21/2019 11:34:49 - INFO - main - Processing features: 10000
08/21/2019 11:35:14 - INFO - main - Filtering features randomly
08/21/2019 11:35:14 - INFO - main - Num orig examples = 10570
08/21/2019 11:35:14 - INFO - main - Num split features = 14456
08/21/2019 11:35:14 - INFO - main - Num split filtered features = 13433
08/21/2019 11:35:14 - INFO - main - Batch size for ranker = 8
08/21/2019 11:35:14 - INFO - main - Batch size for reader = 4
08/21/2019 11:35:14 - INFO - main - Running training distillation
08/21/2019 11:35:14 - INFO - main - Processing example: 0
08/21/2019 11:35:38 - INFO - main - Processing example: 5000
08/21/2019 11:36:02 - INFO - main - Processing example: 10000
08/21/2019 11:36:25 - INFO - main - Processing example: 15000
08/21/2019 11:36:49 - INFO - main - Processing example: 20000
08/21/2019 11:37:13 - INFO - main - Processing example: 25000
08/21/2019 11:37:37 - INFO - main - Processing example: 30000
此处省略
08/21/2019 11:43:33 - INFO - main - Processing example: 105000
08/21/2019 11:43:57 - INFO - main - Processing example: 110000
08/21/2019 11:44:19 - INFO - main - Reconstruct training data at distill_2paras_2best.pkl
08/21/2019 11:44:19 - INFO - main - Filtering features based on: out/squad_doc/011/distill_2paras_2best.pkl
08/21/2019 11:45:39 - INFO - main - Num orig examples = 87599
08/21/2019 11:45:39 - INFO - main - Num split features = 113423
08/21/2019 11:45:39 - INFO - main - Num split filtered features = 108130
08/21/2019 11:45:39 - INFO - main - Batch size for ranker = 4
08/21/2019 11:45:39 - INFO - main - Batch size for reader = 4
08/21/2019 11:45:39 - INFO - main - Num steps = 54065
08/21/2019 11:45:43 - INFO - main - Running eval distillation
08/21/2019 11:45:43 - INFO - main - Processing example: 0
08/21/2019 11:46:06 - INFO - main - Processing example: 5000
08/21/2019 11:46:27 - INFO - main - Processing example: 10000
08/21/2019 11:46:48 - INFO - main - Reconstruct eval data at test_2paras_2best.pkl
08/21/2019 11:46:48 - INFO - main - Filtering features based on: out/squad_doc/011/test_2paras_2best.pkl
08/21/2019 11:46:48 - INFO - main - Num orig examples = 10570
08/21/2019 11:46:48 - INFO - main - Num split features = 14456
08/21/2019 11:46:48 - INFO - main - Num split filtered features = 13433
08/21/2019 11:46:48 - INFO - main - Batch size for ranker = 8
08/21/2019 11:46:48 - INFO - main - Batch size for reader = 4
08/21/2019 11:46:48 - INFO - main - Preparing optimizer
08/21/2019 11:46:48 - INFO - main - Running training
08/21/2019 11:46:48 - INFO - main - Epoch: 1
Traceback (most recent call last):
File "run_squad_document_full_e2e.py", line 914, in
main()
File "run_squad_document_full_e2e.py", line 857, in main
save_path, best_f1, epoch)
File "run_squad_document_full_e2e.py", line 509, in run_train_epoch
args.verbose_logging, logger)
File "/workspace/pythonprogram_zm/RE3QA/squad/squad_document_utils.py", line 1099, in annotate_candidates
assert len(span_starts) == int(n_best_size/4)
AssertionError
root@9953e6052f70:/workspace/pythonprogram_zm/RE3QA/bert# vim run_squad_document_full_e2e.py
root@9953e6052f70:/workspace/pythonprogram_zm/RE3QA/bert# python3 run_squad_document_full_e2e.py
08/21/2019 12:10:19 - INFO - main - output_dir: out/squad_doc/011
08/21/2019 12:10:19 - INFO - main - torch_version: 0.4.1 device: cuda n_gpu: 1, distributed training: False, 16-bits training: False
08/21/2019 12:10:19 - INFO - main - Preparing model
08/21/2019 12:10:22 - INFO - main - Loading model from pretrained checkpoint: ../../data/bert-base-uncased/pytorch_model.bin
08/21/2019 12:10:23 - INFO - main - Weights of BertForRankingAndReadingAndReranking not initialized from pretrained model: ['rank_affine.weight', 'rank_affine.bias', 'rank_dense.weight', 'rank_dense.bias', 'rank_classifier.weight', 'rank_classifier.bias', 'read_affine.weight', 'read_affine.bias', 'rerank_affine.weight', 'rerank_affine.bias', 'rerank_dense.weight', 'rerank_dense.bias', 'rerank_classifier.weight', 'rerank_classifier.bias']
08/21/2019 12:10:23 - INFO - main - Weights from pretrained model not used in BertForRankingAndReadingAndReranking: ['cls.predictions.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.gamma', 'cls.predictions.transform.LayerNorm.beta', 'cls.predictions.decoder.weight', 'cls.seq_relationship.weight', 'cls.seq_relationship.bias']
08/21/2019 12:10:26 - INFO - main - Preparing training
08/21/2019 12:10:29 - INFO - main - Loading examples from: ../../data/squad1/train_4paras_examples.pkl
08/21/2019 12:11:21 - INFO - main - Loading features from: ../../data/squad1/train_4paras_384max_128stride_features.pkl
08/21/2019 12:11:21 - INFO - main - Filtering features randomly
08/21/2019 12:11:22 - INFO - main - Num orig examples = 87599
08/21/2019 12:11:22 - INFO - main - Num split features = 308278
08/21/2019 12:11:22 - INFO - main - Num split filtered features = 219303
08/21/2019 12:11:22 - INFO - main - Batch size for ranker = 5
08/21/2019 12:11:22 - INFO - main - Batch size for reader = 4
08/21/2019 12:11:22 - INFO - main - Num steps = 109651
08/21/2019 12:11:31 - INFO - main - Preparing evaluation
08/21/2019 12:11:37 - INFO - main - Loading examples from: ../../data/squad1/eval_10paras_examples.pkl
08/21/2019 12:11:57 - INFO - main - Loading features from: ../../data/squad1/eval_10paras_384max_128stride_features.pkl
08/21/2019 12:11:57 - INFO - main - Filtering features randomly
08/21/2019 12:11:57 - INFO - main - Num orig examples = 10570
08/21/2019 12:11:57 - INFO - main - Num split features = 122413
08/21/2019 12:11:57 - INFO - main - Num split filtered features = 42279
08/21/2019 12:11:57 - INFO - main - Batch size for ranker = 8
08/21/2019 12:11:57 - INFO - main - Batch size for reader = 4
08/21/2019 12:12:00 - INFO - main - Running training distillation
08/21/2019 12:12:00 - INFO - main - Processing example: 0
08/21/2019 12:12:23 - INFO - main - Processing example: 5000
08/21/2019 12:12:46 - INFO - main - Processing example: 10000
08/21/2019 12:13:10 - INFO - main - Processing example: 15000
此处省略
08/21/2019 12:33:57 - INFO - main - Processing example: 285000
08/21/2019 12:34:20 - INFO - main - Processing example: 290000
08/21/2019 12:34:43 - INFO - main - Processing example: 295000
08/21/2019 12:35:06 - INFO - main - Processing example: 300000
08/21/2019 12:35:29 - INFO - main - Processing example: 305000
08/21/2019 12:36:07 - INFO - main - Reconstruct training data at distill_4paras_4best.pkl
08/21/2019 12:36:07 - INFO - main - Filtering features based on: out/squad_doc/011/distill_4paras_4best.pkl
08/21/2019 12:45:35 - INFO - main - Num orig examples = 87599
08/21/2019 12:45:35 - INFO - main - Num split features = 308278
08/21/2019 12:45:35 - INFO - main - Num split filtered features = 282203
08/21/2019 12:45:35 - INFO - main - Batch size for ranker = 4
08/21/2019 12:45:35 - INFO - main - Batch size for reader = 4
08/21/2019 12:45:35 - INFO - main - Num steps = 141101
08/21/2019 12:45:46 - INFO - main - Running eval distillation
08/21/2019 12:45:46 - INFO - main - Processing example: 0
08/21/2019 12:46:09 - INFO - main - Processing example: 5000
08/21/2019 12:46:31 - INFO - main - Processing example: 10000
08/21/2019 12:46:52 - INFO - main - Processing example: 15000
此处省略
08/21/2019 12:53:49 - INFO - main - Processing example: 110000
08/21/2019 12:54:11 - INFO - main - Processing example: 115000
08/21/2019 12:54:33 - INFO - main - Processing example: 120000
08/21/2019 12:54:46 - INFO - main - Reconstruct eval data at test_10paras_4best.pkl
08/21/2019 12:54:46 - INFO - main - Filtering features based on: out/squad_doc/011/test_10paras_4best.pkl
08/21/2019 12:54:47 - INFO - main - Num orig examples = 10570
08/21/2019 12:54:47 - INFO - main - Num split features = 122413
08/21/2019 12:54:47 - INFO - main - Num split filtered features = 42279
08/21/2019 12:54:47 - INFO - main - Batch size for ranker = 8
08/21/2019 12:54:47 - INFO - main - Batch size for reader = 4
08/21/2019 12:54:50 - INFO - main - Preparing optimizer
08/21/2019 12:54:50 - INFO - main - Running training
08/21/2019 12:54:50 - INFO - main - Epoch: 1
08/21/2019 13:02:21 - INFO - main - step: 1000, loss: 14.307
08/21/2019 13:09:40 - INFO - main - step: 2000, loss: 4.402
08/21/2019 13:17:01 - INFO - main - step: 3000, loss: 3.800
08/21/2019 13:24:17 - INFO - main - step: 4000, loss: 3.560
08/21/2019 13:31:30 - INFO - main - step: 5000, loss: 3.400
08/21/2019 13:38:53 - INFO - main - step: 6000, loss: 3.300
08/21/2019 13:46:21 - INFO - main - step: 7000, loss: 3.208
08/21/2019 13:53:43 - INFO - main - step: 8000, loss: 3.120
08/21/2019 14:01:13 - INFO - main - step: 9000, loss: 3.022
08/21/2019 14:08:39 - INFO - main - step: 10000, loss: 2.898
08/21/2019 14:16:05 - INFO - main - step: 11000, loss: 2.879
08/21/2019 14:23:31 - INFO - main - step: 12000, loss: 2.861
08/21/2019 14:31:04 - INFO - main - step: 13000, loss: 2.877
08/21/2019 14:38:29 - INFO - main - step: 14000, loss: 2.821
08/21/2019 14:46:01 - INFO - main - step: 15000, loss: 2.798
08/21/2019 14:53:32 - INFO - main - step: 16000, loss: 2.801
08/21/2019 15:01:00 - INFO - main - step: 17000, loss: 2.756
08/21/2019 15:08:36 - INFO - main - step: 18000, loss: 2.731
08/21/2019 15:16:12 - INFO - main - step: 19000, loss: 2.651
08/21/2019 15:23:41 - INFO - main - step: 20000, loss: 2.735
08/21/2019 15:31:05 - INFO - main - step: 21000, loss: 2.614
08/21/2019 15:38:31 - INFO - main - step: 22000, loss: 2.635
08/21/2019 15:45:57 - INFO - main - step: 23000, loss: 2.608
08/21/2019 15:53:18 - INFO - main - step: 24000, loss: 2.615
08/21/2019 16:00:43 - INFO - main - step: 25000, loss: 2.568
08/21/2019 16:08:21 - INFO - main - step: 26000, loss: 2.565
08/21/2019 16:15:51 - INFO - main - step: 27000, loss: 2.588
08/21/2019 16:23:15 - INFO - main - step: 28000, loss: 2.616
08/21/2019 16:30:39 - INFO - main - step: 29000, loss: 2.577
08/21/2019 16:38:04 - INFO - main - step: 30000, loss: 2.565
08/21/2019 16:45:23 - INFO - main - step: 31000, loss: 2.576
08/21/2019 16:52:43 - INFO - main - step: 32000, loss: 2.489
08/21/2019 16:59:49 - INFO - main - step: 33000, loss: 2.465
08/21/2019 17:07:11 - INFO - main - step: 34000, loss: 2.465
08/21/2019 17:14:48 - INFO - main - step: 35000, loss: 2.517
08/21/2019 17:22:05 - INFO - main - step: 36000, loss: 2.523
08/21/2019 17:29:20 - INFO - main - step: 37000, loss: 2.416
08/21/2019 17:36:41 - INFO - main - step: 38000, loss: 2.402
08/21/2019 17:43:49 - INFO - main - step: 39000, loss: 2.466
08/21/2019 17:51:17 - INFO - main - step: 40000, loss: 2.440
08/21/2019 17:58:43 - INFO - main - step: 41000, loss: 2.356
08/21/2019 18:06:08 - INFO - main - step: 42000, loss: 2.407
08/21/2019 18:13:27 - INFO - main - step: 43000, loss: 2.418
08/21/2019 18:20:35 - INFO - main - step: 44000, loss: 2.343
08/21/2019 18:27:41 - INFO - main - step: 45000, loss: 2.349
08/21/2019 18:34:48 - INFO - main - step: 46000, loss: 2.369
08/21/2019 18:41:54 - INFO - main - step: 47000, loss: 2.316
08/21/2019 18:49:00 - INFO - main - step: 48000, loss: 2.334
08/21/2019 18:56:06 - INFO - main - step: 49000, loss: 2.225
08/21/2019 19:03:12 - INFO - main - step: 50000, loss: 2.347
08/21/2019 19:10:28 - INFO - main - step: 51000, loss: 2.323
08/21/2019 19:17:49 - INFO - main - step: 52000, loss: 2.261
08/21/2019 19:25:11 - INFO - main - step: 53000, loss: 2.317
08/21/2019 19:32:35 - INFO - main - step: 54000, loss: 2.259
08/21/2019 19:39:57 - INFO - main - step: 55000, loss: 2.308
08/21/2019 19:47:33 - INFO - main - step: 56000, loss: 2.299
08/21/2019 19:54:59 - INFO - main - step: 57000, loss: 2.253
08/21/2019 20:02:20 - INFO - main - step: 58000, loss: 2.262
08/21/2019 20:09:42 - INFO - main - step: 59000, loss: 2.275
08/21/2019 20:17:02 - INFO - main - step: 60000, loss: 2.261
08/21/2019 20:24:25 - INFO - main - step: 61000, loss: 2.244
08/21/2019 20:31:47 - INFO - main - step: 62000, loss: 2.209
08/21/2019 20:39:07 - INFO - main - step: 63000, loss: 2.196
08/21/2019 20:46:29 - INFO - main - step: 64000, loss: 2.232
08/21/2019 20:53:56 - INFO - main - step: 65000, loss: 2.173
08/21/2019 21:01:20 - INFO - main - step: 66000, loss: 2.172
08/21/2019 21:08:41 - INFO - main - step: 67000, loss: 2.118
08/21/2019 21:16:03 - INFO - main - step: 68000, loss: 2.163
08/21/2019 21:23:17 - INFO - main - step: 69000, loss: 2.224
08/21/2019 21:30:24 - INFO - main - step: 70000, loss: 2.207
08/21/2019 21:34:18 - INFO - main - Running ranking evaluation
08/21/2019 21:43:13 - INFO - main - Running reading evaluation
missing prediction on 0 examples
08/21/2019 21:58:44 - INFO - main - Running training distillation
08/21/2019 21:58:44 - INFO - main - Processing example: 0
08/21/2019 21:59:08 - INFO - main - Processing example: 5000
08/21/2019 21:59:31 - INFO - main - Processing example: 10000
此处省略
08/21/2019 22:21:06 - INFO - main - Processing example: 285000
08/21/2019 22:21:29 - INFO - main - Processing example: 290000
08/21/2019 22:21:53 - INFO - main - Processing example: 295000
08/21/2019 22:22:16 - INFO - main - Processing example: 300000
08/21/2019 22:22:40 - INFO - main - Processing example: 305000
08/21/2019 22:23:10 - INFO - main - Reconstruct training data at distill_4paras_4best.pkl
08/21/2019 22:23:11 - INFO - main - Filtering features based on: out/squad_doc/011/distill_4paras_4best.pkl
08/21/2019 22:32:28 - INFO - main - Num orig examples = 87599
08/21/2019 22:32:28 - INFO - main - Num split features = 308278
08/21/2019 22:32:28 - INFO - main - Num split filtered features = 282203
08/21/2019 22:32:28 - INFO - main - Batch size for ranker = 4
08/21/2019 22:32:28 - INFO - main - Batch size for reader = 4
08/21/2019 22:32:28 - INFO - main - Num steps = 141101
08/21/2019 22:32:38 - INFO - main - Running eval distillation
08/21/2019 22:32:38 - INFO - main - Processing example: 0
08/21/2019 22:33:00 - INFO - main - Processing example: 5000
08/21/2019 22:33:22 - INFO - main - Processing example: 10000
08/21/2019 22:33:44 - INFO - main - Processing example: 15000
此处省略
08/21/2019 22:40:38 - INFO - main - Processing example: 110000
08/21/2019 22:41:00 - INFO - main - Processing example: 115000
08/21/2019 22:41:21 - INFO - main - Processing example: 120000
08/21/2019 22:41:34 - INFO - main - Reconstruct eval data at test_10paras_4best.pkl
08/21/2019 22:41:34 - INFO - main - Filtering features based on: out/squad_doc/011/test_10paras_4best.pkl
08/21/2019 22:41:34 - INFO - main - Num orig examples = 10570
08/21/2019 22:41:34 - INFO - main - Num split features = 122413
08/21/2019 22:41:34 - INFO - main - Num split filtered features = 42279
08/21/2019 22:41:34 - INFO - main - Batch size for ranker = 8
08/21/2019 22:41:34 - INFO - main - Batch size for reader = 4
08/21/2019 22:41:36 - INFO - main - Epoch: 2
08/21/2019 22:44:47 - INFO - main - step: 71000, loss: 1.856
08/21/2019 22:51:52 - INFO - main - step: 72000, loss: 1.839
08/21/2019 22:58:57 - INFO - main - step: 73000, loss: 1.840
08/21/2019 23:06:10 - INFO - main - step: 74000, loss: 1.831
08/21/2019 23:13:31 - INFO - main - step: 75000, loss: 1.810
08/21/2019 23:20:53 - INFO - main - step: 76000, loss: 1.753
08/21/2019 23:28:14 - INFO - main - step: 77000, loss: 1.837
08/21/2019 23:35:34 - INFO - main - step: 78000, loss: 1.844
08/21/2019 23:42:58 - INFO - main - step: 79000, loss: 1.860
08/21/2019 23:50:18 - INFO - main - step: 80000, loss: 1.831
08/21/2019 23:57:39 - INFO - main - step: 81000, loss: 1.775
08/22/2019 00:05:08 - INFO - main - step: 82000, loss: 1.808
08/22/2019 00:12:32 - INFO - main - step: 83000, loss: 1.872
08/22/2019 00:19:56 - INFO - main - step: 84000, loss: 1.813
08/22/2019 00:27:19 - INFO - main - step: 85000, loss: 1.794
08/22/2019 00:34:52 - INFO - main - step: 86000, loss: 1.812
08/22/2019 00:42:19 - INFO - main - step: 87000, loss: 1.831
08/22/2019 00:49:49 - INFO - main - step: 88000, loss: 1.810
08/22/2019 00:57:12 - INFO - main - step: 89000, loss: 1.758
08/22/2019 01:04:32 - INFO - main - step: 90000, loss: 1.796
08/22/2019 01:11:55 - INFO - main - step: 91000, loss: 1.761
08/22/2019 01:19:15 - INFO - main - step: 92000, loss: 1.807
08/22/2019 01:26:35 - INFO - main - step: 93000, loss: 1.768
08/22/2019 01:33:57 - INFO - main - step: 94000, loss: 1.782
08/22/2019 01:41:28 - INFO - main - step: 95000, loss: 1.789
08/22/2019 01:48:45 - INFO - main - step: 96000, loss: 1.727
08/22/2019 01:56:10 - INFO - main - step: 97000, loss: 1.742
08/22/2019 02:03:32 - INFO - main - step: 98000, loss: 1.717
08/22/2019 02:10:53 - INFO - main - step: 99000, loss: 1.714
08/22/2019 02:18:13 - INFO - main - step: 100000, loss: 1.762
08/22/2019 02:25:35 - INFO - main - step: 101000, loss: 1.671
08/22/2019 02:32:54 - INFO - main - step: 102000, loss: 1.700
08/22/2019 02:40:19 - INFO - main - step: 103000, loss: 1.697
08/22/2019 02:47:39 - INFO - main - step: 104000, loss: 1.708
08/22/2019 02:54:59 - INFO - main - step: 105000, loss: 1.700
08/22/2019 03:02:24 - INFO - main - step: 106000, loss: 1.690
08/22/2019 03:09:42 - INFO - main - step: 107000, loss: 1.656
08/22/2019 03:16:58 - INFO - main - step: 108000, loss: 1.710
08/22/2019 03:24:14 - INFO - main - step: 109000, loss: 1.726
08/22/2019 03:31:31 - INFO - main - step: 110000, loss: 1.696
08/22/2019 03:38:53 - INFO - main - step: 111000, loss: 1.669
08/22/2019 03:46:13 - INFO - main - step: 112000, loss: 1.707
08/22/2019 03:53:33 - INFO - main - step: 113000, loss: 1.690
08/22/2019 04:00:37 - INFO - main - step: 114000, loss: 1.669
08/22/2019 04:07:47 - INFO - main - step: 115000, loss: 1.667
08/22/2019 04:15:08 - INFO - main - step: 116000, loss: 1.692
08/22/2019 04:22:28 - INFO - main - step: 117000, loss: 1.672
08/22/2019 04:29:48 - INFO - main - step: 118000, loss: 1.602
08/22/2019 04:37:13 - INFO - main - step: 119000, loss: 1.655
08/22/2019 04:44:18 - INFO - main - step: 120000, loss: 1.634
08/22/2019 04:51:23 - INFO - main - step: 121000, loss: 1.652
08/22/2019 04:58:35 - INFO - main - step: 122000, loss: 1.617
08/22/2019 05:05:56 - INFO - main - step: 123000, loss: 1.603
08/22/2019 05:13:17 - INFO - main - step: 124000, loss: 1.590
08/22/2019 05:20:33 - INFO - main - step: 125000, loss: 1.641
08/22/2019 05:27:48 - INFO - main - step: 126000, loss: 1.644
08/22/2019 05:35:09 - INFO - main - step: 127000, loss: 1.580
08/22/2019 05:42:33 - INFO - main - step: 128000, loss: 1.649
08/22/2019 05:49:53 - INFO - main - step: 129000, loss: 1.612
08/22/2019 05:57:13 - INFO - main - step: 130000, loss: 1.560
08/22/2019 06:04:34 - INFO - main - step: 131000, loss: 1.540
08/22/2019 06:11:57 - INFO - main - step: 132000, loss: 1.603
08/22/2019 06:19:20 - INFO - main - step: 133000, loss: 1.568
08/22/2019 06:26:40 - INFO - main - step: 134000, loss: 1.557
08/22/2019 06:34:03 - INFO - main - step: 135000, loss: 1.562
08/22/2019 06:41:25 - INFO - main - step: 136000, loss: 1.581
08/22/2019 06:48:59 - INFO - main - step: 137000, loss: 1.467
08/22/2019 06:56:19 - INFO - main - step: 138000, loss: 1.592
08/22/2019 07:03:40 - INFO - main - step: 139000, loss: 1.587
08/22/2019 07:11:01 - INFO - main - step: 140000, loss: 1.574
08/22/2019 07:18:21 - INFO - main - step: 141000, loss: 1.593
08/22/2019 07:19:05 - INFO - main - Running ranking evaluation
08/22/2019 07:28:01 - INFO - main - Running reading evaluation
missing prediction on 0 examples
08/22/2019 07:43:52 - INFO - main - Preparing prediction
Recall of answer existence in documents: 0.990
Average length of documents: 5287.083
Average pruned length of documents: 3666.967
08/22/2019 07:44:15 - INFO - main - Processing features: 5000
08/22/2019 07:44:27 - INFO - main - Processing features: 10000
此处省略
08/22/2019 07:58:55 - INFO - main - Processing features: 370000
08/22/2019 07:59:07 - INFO - main - Processing features: 375000
08/22/2019 08:00:11 - INFO - main - Filtering features randomly
08/22/2019 08:00:12 - INFO - main - Num orig examples = 10570
08/22/2019 08:00:12 - INFO - main - Num split features = 378602
08/22/2019 08:00:12 - INFO - main - Num split filtered features = 84560
08/22/2019 08:00:12 - INFO - main - Batch size for ranker = 8
08/22/2019 08:00:12 - INFO - main - Batch size for reader = 4
08/22/2019 08:00:24 - INFO - main - Running ranking prediction
08/22/2019 08:00:25 - INFO - main - Loading model from finetuned checkpoint: 'out/squad_doc/011/checkpoint.pth.tar' (step 141102)
08/22/2019 08:00:25 - INFO - main - Processing example: 0
08/22/2019 08:00:46 - INFO - main - Processing example: 5000
08/22/2019 08:01:08 - INFO - main - Processing example: 10000
此处省略
08/22/2019 08:27:01 - INFO - main - Processing example: 365000
08/22/2019 08:27:23 - INFO - main - Processing example: 370000
08/22/2019 08:27:45 - INFO - main - Processing example: 375000
08/22/2019 08:28:05 - INFO - main - Reconstruct pred data at test_30paras_8best.pkl
08/22/2019 08:28:05 - INFO - main - Filtering features based on: out/squad_doc/011/test_30paras_8best.pkl
08/22/2019 08:28:19 - INFO - main - Num orig examples = 10570
08/22/2019 08:28:19 - INFO - main - Num split features = 378602
08/22/2019 08:28:19 - INFO - main - Num split filtered features = 84560
08/22/2019 08:28:19 - INFO - main - Batch size for ranker = 8
08/22/2019 08:28:19 - INFO - main - Batch size for reader = 4
08/22/2019 08:28:29 - INFO - main - Running reading prediction
08/22/2019 08:28:30 - INFO - main - Loading model from finetuned checkpoint: 'out/squad_doc/011/checkpoint.pth.tar' (step 141102)
08/22/2019 08:28:30 - INFO - main - Processing example: 0
08/22/2019 08:30:10 - INFO - main - Processing example: 5000
08/22/2019 08:31:50 - INFO - main - Processing example: 10000
08/22/2019 08:33:31 - INFO - main - Processing example: 15000
08/22/2019 08:35:12 - INFO - main - Processing example: 20000
08/22/2019 08:36:52 - INFO - main - Processing example: 25000
08/22/2019 08:38:33 - INFO - main - Processing example: 30000
08/22/2019 08:40:13 - INFO - main - Processing example: 35000
08/22/2019 08:41:54 - INFO - main - Processing example: 40000
08/22/2019 08:43:34 - INFO - main - Processing example: 45000
08/22/2019 08:45:14 - INFO - main - Processing example: 50000
08/22/2019 08:46:55 - INFO - main - Processing example: 55000
08/22/2019 08:48:36 - INFO - main - Processing example: 60000
08/22/2019 08:50:16 - INFO - main - Processing example: 65000
08/22/2019 08:51:56 - INFO - main - Processing example: 70000
08/22/2019 08:53:37 - INFO - main - Processing example: 75000
08/22/2019 08:55:18 - INFO - main - Processing example: 80000
08/22/2019 08:59:08 - INFO - main - Writing predictions to: out/squad_doc/011/predictions.json
08/22/2019 08:59:08 - INFO - main - Writing nbest to: out/squad_doc/011/nbest_predictions.json
missing prediction on 0 examples