Closed caoxuefengzz closed 2 years ago
Hi @caoxuefengzz, you should take care of the following:
NUM_CLASSES
, which determines the classes of your dataset.NUM_MASKS
, which determines the maximum instances in your dataset. (I suggest that you can leave it 100 as default.)Thank you for your reply !
I have trained my dataset by learnning from detectron2 github.
If you have time, I suggest you give a detailed train tutorial in your README.MD. because it's diffcult for a newer of detectron2 to train sparseinst.
Hi, @caoxuefengzz, your suggestion is good and we'll add it. This issue will be closed, you can open a new issue if you have other problems or reopen it. Thanks for your interest in SparseInst 😊 . If you find it useful in your work or research, could you give us a star 🌟 or help us recommend SparseInst to your friends.
Changing NUM_CLASSES causes CUDA error 59: Device-side assert triggered. Due to some sort of mismatch ig. Any way to enable only two classes and avoid this mismatch?
Changing NUM_CLASSES from 80 to 2, caused this. Also, any way to load the pretrained SparseInst models and continue training for finetuning?
Hello. I'm new to SparseInst, and also new to detectron2. I want to train my own datatset that fomart with coco . But I don't no how to modify your config. or I need modify some codes of detectron2? I have 2 class,when I train as issues #34. I got a error as below:
`Traceback (most recent call last): File "train_net.py", line 180, in
launch(
File "/home/cxf/detectron2-0.3/detectron2/engine/launch.py", line 62, in launch
main_func(args)
File "train_net.py", line 172, in main
trainer = Trainer(cfg)
File "/home/cxf/detectron2-0.3/detectron2/engine/defaults.py", line 284, in init
data_loader = self.build_train_loader(cfg)
File "train_net.py", line 144, in build_train_loader
return build_detection_train_loader(cfg, mapper=mapper)
File "/home/cxf/detectron2-0.3/detectron2/config/config.py", line 201, in wrapped
explicit_args = _get_args_from_config(from_config, args, *kwargs)
File "/home/cxf/detectron2-0.3/detectron2/config/config.py", line 236, in _get_args_from_config
ret = from_config_func(args, **kwargs)
File "/home/cxf/detectron2-0.3/detectron2/data/build.py", line 301, in _train_loader_from_config
dataset = get_detection_dataset_dicts(
File "/home/cxf/detectron2-0.3/detectron2/data/build.py", line 220, in get_detection_dataset_dicts
dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in dataset_names]
File "/home/cxf/detectron2-0.3/detectron2/data/build.py", line 220, in
dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in dataset_names]
File "/home/cxf/detectron2-0.3/detectron2/data/catalog.py", line 58, in get
return f()
File "/home/cxf/detectron2-0.3/detectron2/data/datasets/coco.py", line 469, in
DatasetCatalog.register(name, lambda: load_coco_json(json_file, image_root, name))
File "/home/cxf/detectron2-0.3/detectron2/data/datasets/coco.py", line 71, in load_coco_json
meta.thing_classes = thing_classes
File "/home/cxf/detectron2-0.3/detectron2/data/catalog.py", line 148, in setattr
assert oldval == val, (
AssertionError: Attribute 'thing_classes' in the metadata of 'coco_2017_train' cannot be set to a different value!
['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'] != ['background', 'table', 'index']
Could you give a detailed document about training in README.MD? About how to set datasets, how to modify config...