hvidy / PIPE-4002-EarthByte-ModelAtlas

SIH repo for work on PIPE-4002
0 stars 0 forks source link

Section 3 Parse Test #25

Open hvidy opened 5 months ago

hvidy commented 5 months ago

-> creator/contributor ORCID (or name)

0000-0002-6980-3392

-> slug

white_2017_pleiades

-> field of Research (FoR) Codes

510102,510109, 490304

-> license

CC-BY-4.0

-> model category

model published in study, attempted reproduction of a model

-> associated publication DOI

https://doi.org/10.1029/2022GC010386

-> title

No response

-> description

No response

-> model authors

No response

-> scientific keywords

arc continent collision, arc buoyancy, contrasting style of collision, lithospheric flow

-> funder

No response

-> include model code ?

-> model code URI/DOI

https://zenodo.org/records/5153073

-> include model output data?

-> model output URI/DOI

No response

-> software framework DOI/URI

https://doi.org/10.5281/zenodo.5131909

-> software framework source repository

https://github.com/underworldcode/underworld2

-> name of primary software framework (e.g. Underworld, ASPECT, Badlands, OpenFOAM)

No response

-> software framework authors

No response

-> software & algorithm keywords

Python, Finite element

-> computer URI/DOI

https://doi.org/10.25914/608bfd1838db2

-> add landing page image and caption

No response

-> add an animation (if relevant)

No response

-> add a graphic abstract figure (if relevant)

No response

-> add a model setup figure (if relevant)

No response

-> add a description of your model setup

No response

github-actions[bot] commented 5 months ago

Thank you for submitting. Please check the output below, and fix any errors, etc.

Errors and Warnings

Include model output data? Error: no selection made Model output URI/DOI Warning: No URI/DOI provided. Software Framework DOI/URI Error: unable to obtain metadata for DOI org/records/5153073 name 'parse_software' is not defined Name of primary software framework Error: no name found Software framework authors Error: no authors found

Parsed data

Section 1: Summary of your model

Creator/Contributor Creator/contributor is Timothy White (0000-0002-6980-3392)

Model Repository Slug Model repo will be created with name white_2017_pleiades

Field of Research (FoR) Codes

License Creative Commons Attribution 4.0 International

Model Category

Associated Publication Found publication: The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision

Title The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision

Description We investigate how the mechanical properties of intra‐oceanic arcs affect the collision style and associated stress‐strain evolution with buoyancy‐driven models of subduction that accurately reproduce the dynamic interaction of the lithosphere and mantle. We performed a series of simulations only varying the effective arc thickness as it controls the buoyancy of intra‐oceanic arcs. Our simulations spontaneously evolve into two contrasting styles of collision that are controlled by a 3% density contrast between the arc and the continental plate. In simulations with less buoyant arcs (15–31 km; effective thickness), we observe arc‐transference to the overriding plate and slab‐anchoring and folding at the 660 km transition zone that result in fluctuations in the slab dip, strain‐stress regime, surface kinematics, and viscous dissipation. After slab‐folding occurs, the gravitational potential energy is dissipated in the form of lithospheric flow causing lithospheric extension in the overriding plate. Conversely, simulations with more buoyant arcs (32–35 km; effective thickness) do not lead to arc‐transference and result in slab break‐off, which causes an asymptotic trend in surface kinematics, viscous dissipation and strain‐stress regime, and lithospheric extension in the overriding plate. The results of our numerical modeling highlight the importance of slab‐anchoring and folding in the 660 km transition zone on increasing the mechanical coupling of the subduction system.

Model Authors

Scientific Keywords

Funder

Section 2: your model code, output data

Include model code? True

Model code URI/DOI https://zenodo.org/records/5153073

Section 3: software framework and compute details

Software Repository https://github.com/underworldcode/underworld2

Software & algorithm keywords

Computer URI/DOI https://doi.org/10.25914/608bfd1838db2

Section 4: web material (for mate.science)

Dumping dictionary during testing{'creator': {'@type': 'Person', '@id': 'https://orcid.org/0000-0002-6980-3392', 'givenName': 'Timothy', 'familyName': 'White', 'affiliation': [{'@type': 'Organization', 'name': 'University of Sydney'}]}, 'slug': 'white_2017_pleiades', 'for_codes': [{'@id': '#FoR_510102', '@type': 'DefinedTerm', 'name': 'Astronomical instrumentation'}, {'@id': '#FoR_510109', '@type': 'DefinedTerm', 'name': 'Stellar astronomy and planetary systems'}, {'@id': '#FoR_490304', '@type': 'DefinedTerm', 'name': 'Optimisation '}], 'license': {'name': 'Creative Commons Attribution 4.0 International', 'url': 'https://creativecommons.org/licenses/by/4.0/legalcode'}, 'model_category': ['model published in study', 'attempted reproduction of a model'], 'publication': {'@type': 'ScholarlyArticle', '@id': 'http://dx.doi.org/10.1029/2022gc010386', 'name': 'The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision', 'isPartOf': ({'@type': 'PublicationIssue', 'issueNumber': '11', 'datePublished': '2022-11', 'isPartOf': {'@type': ['PublicationVolume', 'Periodical'], 'name': ['Geochemistry, Geophysics, Geosystems'], 'issn': ['1525-2027', '1525-2027'], 'volumeNumber': '23', 'publisher': 'American Geophysical Union (AGU)'}},), 'author': [{'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1521-7910', 'givenName': 'Andrés Felipe', 'familyName': 'Rodríguez Corcho', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}, {'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1270-4377', 'givenName': 'Sara', 'familyName': 'Polanco', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-2594-6965', 'givenName': 'Rebecca', 'familyName': 'Farrington', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3891-5444', 'givenName': 'Romain', 'familyName': 'Beucher', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-3553-0787', 'givenName': 'Camilo', 'familyName': 'Montes', 'affiliation': [{'@type': 'Organization', 'name': 'Department of Physics and Geosciences Universidad del Norte Barranquilla Colombia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3685-174X', 'givenName': 'Louis', 'familyName': 'Moresi', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}], 'abstract': 'We investigate how the mechanical properties of intra‐oceanic arcs affect the collision style and associated stress‐strain evolution with buoyancy‐driven models of subduction that accurately reproduce the dynamic interaction of the lithosphere and mantle. We performed a series of simulations only varying the effective arc thickness as it controls the buoyancy of intra‐oceanic arcs. Our simulations spontaneously evolve into two contrasting styles of collision that are controlled by a 3% density contrast between the arc and the continental plate. In simulations with less buoyant arcs (15–31\xa0km; effective thickness), we observe arc‐transference to the overriding plate and slab‐anchoring and folding at the 660\xa0km transition zone that result in fluctuations in the slab dip, strain‐stress regime, surface kinematics, and viscous dissipation. After slab‐folding occurs, the gravitational potential energy is dissipated in the form of lithospheric flow causing lithospheric extension in the overriding plate. Conversely, simulations with more buoyant arcs (32–35\xa0km; effective thickness) do not lead to arc‐transference and result in slab break‐off, which causes an asymptotic trend in surface kinematics, viscous dissipation and strain‐stress regime, and lithospheric extension in the overriding plate. The results of our numerical modeling highlight the importance of slab‐anchoring and folding in the 660\xa0km transition zone on increasing the mechanical coupling of the subduction system.', 'identifier': ['10.1029/2022GC010386'], 'funder': [{'@type': 'Organization', 'name': 'University of Melbourne'}]}, 'title': 'The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision', 'description': 'We investigate how the mechanical properties of intra‐oceanic arcs affect the collision style and associated stress‐strain evolution with buoyancy‐driven models of subduction that accurately reproduce the dynamic interaction of the lithosphere and mantle. We performed a series of simulations only varying the effective arc thickness as it controls the buoyancy of intra‐oceanic arcs. Our simulations spontaneously evolve into two contrasting styles of collision that are controlled by a 3% density contrast between the arc and the continental plate. In simulations with less buoyant arcs (15–31\xa0km; effective thickness), we observe arc‐transference to the overriding plate and slab‐anchoring and folding at the 660\xa0km transition zone that result in fluctuations in the slab dip, strain‐stress regime, surface kinematics, and viscous dissipation. After slab‐folding occurs, the gravitational potential energy is dissipated in the form of lithospheric flow causing lithospheric extension in the overriding plate. Conversely, simulations with more buoyant arcs (32–35\xa0km; effective thickness) do not lead to arc‐transference and result in slab break‐off, which causes an asymptotic trend in surface kinematics, viscous dissipation and strain‐stress regime, and lithospheric extension in the overriding plate. The results of our numerical modeling highlight the importance of slab‐anchoring and folding in the 660\xa0km transition zone on increasing the mechanical coupling of the subduction system.', 'authors': [{'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1521-7910', 'givenName': 'Andrés Felipe', 'familyName': 'Rodríguez Corcho', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}, {'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1270-4377', 'givenName': 'Sara', 'familyName': 'Polanco', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-2594-6965', 'givenName': 'Rebecca', 'familyName': 'Farrington', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3891-5444', 'givenName': 'Romain', 'familyName': 'Beucher', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-3553-0787', 'givenName': 'Camilo', 'familyName': 'Montes', 'affiliation': [{'@type': 'Organization', 'name': 'Department of Physics and Geosciences Universidad del Norte Barranquilla Colombia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3685-174X', 'givenName': 'Louis', 'familyName': 'Moresi', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}], 'keywords': ['arc continent collision', 'arc buoyancy', 'contrasting style of collision', 'lithospheric flow'], 'funder': [{'@type': 'Organization', 'name': 'University of Melbourne'}], 'include_model_code': True, 'model_code_uri': 'https://zenodo.org/records/5153073', 'software': {'@type': 'SoftwareApplication', 'codeRepository': 'https://github.com/underworldcode/underworld2', 'keywords': ['Python', 'Finite element']}, 'computer_uri': 'https://doi.org/10.25914/608bfd1838db2'}

github-actions[bot] commented 5 months ago

Thank you for submitting. Please check the output below, and fix any errors, etc.

Errors and Warnings

Include model output data? Error: no selection made Model output URI/DOI Warning: No URI/DOI provided. Software Framework DOI/URI

Parsed data

Section 1: Summary of your model

Creator/Contributor Creator/contributor is Timothy White (0000-0002-6980-3392)

Model Repository Slug Model repo will be created with name white_2017_pleiades

Field of Research (FoR) Codes

License Creative Commons Attribution 4.0 International

Model Category

Associated Publication Found publication: The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision

Title The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision

Description We investigate how the mechanical properties of intra‐oceanic arcs affect the collision style and associated stress‐strain evolution with buoyancy‐driven models of subduction that accurately reproduce the dynamic interaction of the lithosphere and mantle. We performed a series of simulations only varying the effective arc thickness as it controls the buoyancy of intra‐oceanic arcs. Our simulations spontaneously evolve into two contrasting styles of collision that are controlled by a 3% density contrast between the arc and the continental plate. In simulations with less buoyant arcs (15–31 km; effective thickness), we observe arc‐transference to the overriding plate and slab‐anchoring and folding at the 660 km transition zone that result in fluctuations in the slab dip, strain‐stress regime, surface kinematics, and viscous dissipation. After slab‐folding occurs, the gravitational potential energy is dissipated in the form of lithospheric flow causing lithospheric extension in the overriding plate. Conversely, simulations with more buoyant arcs (32–35 km; effective thickness) do not lead to arc‐transference and result in slab break‐off, which causes an asymptotic trend in surface kinematics, viscous dissipation and strain‐stress regime, and lithospheric extension in the overriding plate. The results of our numerical modeling highlight the importance of slab‐anchoring and folding in the 660 km transition zone on increasing the mechanical coupling of the subduction system.

Model Authors

Scientific Keywords

Funder

Section 2: your model code, output data

Include model code? True

Model code URI/DOI https://zenodo.org/records/5153073

Section 3: software framework and compute details

Software Repository https://github.com/underworldcode/underworld2

Software & algorithm keywords

Computer URI/DOI https://doi.org/10.25914/608bfd1838db2

Section 4: web material (for mate.science)

Dumping dictionary during testing{'creator': {'@type': 'Person', '@id': 'https://orcid.org/0000-0002-6980-3392', 'givenName': 'Timothy', 'familyName': 'White', 'affiliation': [{'@type': 'Organization', 'name': 'University of Sydney'}]}, 'slug': 'white_2017_pleiades', 'for_codes': [{'@id': '#FoR_510102', '@type': 'DefinedTerm', 'name': 'Astronomical instrumentation'}, {'@id': '#FoR_510109', '@type': 'DefinedTerm', 'name': 'Stellar astronomy and planetary systems'}, {'@id': '#FoR_490304', '@type': 'DefinedTerm', 'name': 'Optimisation '}], 'license': {'name': 'Creative Commons Attribution 4.0 International', 'url': 'https://creativecommons.org/licenses/by/4.0/legalcode'}, 'model_category': ['model published in study', 'attempted reproduction of a model'], 'publication': {'@type': 'ScholarlyArticle', '@id': 'http://dx.doi.org/10.1029/2022gc010386', 'name': 'The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision', 'isPartOf': ({'@type': 'PublicationIssue', 'issueNumber': '11', 'datePublished': '2022-11', 'isPartOf': {'@type': ['PublicationVolume', 'Periodical'], 'name': ['Geochemistry, Geophysics, Geosystems'], 'issn': ['1525-2027', '1525-2027'], 'volumeNumber': '23', 'publisher': 'American Geophysical Union (AGU)'}},), 'author': [{'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1521-7910', 'givenName': 'Andrés Felipe', 'familyName': 'Rodríguez Corcho', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}, {'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1270-4377', 'givenName': 'Sara', 'familyName': 'Polanco', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-2594-6965', 'givenName': 'Rebecca', 'familyName': 'Farrington', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3891-5444', 'givenName': 'Romain', 'familyName': 'Beucher', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-3553-0787', 'givenName': 'Camilo', 'familyName': 'Montes', 'affiliation': [{'@type': 'Organization', 'name': 'Department of Physics and Geosciences Universidad del Norte Barranquilla Colombia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3685-174X', 'givenName': 'Louis', 'familyName': 'Moresi', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}], 'abstract': 'We investigate how the mechanical properties of intra‐oceanic arcs affect the collision style and associated stress‐strain evolution with buoyancy‐driven models of subduction that accurately reproduce the dynamic interaction of the lithosphere and mantle. We performed a series of simulations only varying the effective arc thickness as it controls the buoyancy of intra‐oceanic arcs. Our simulations spontaneously evolve into two contrasting styles of collision that are controlled by a 3% density contrast between the arc and the continental plate. In simulations with less buoyant arcs (15–31\xa0km; effective thickness), we observe arc‐transference to the overriding plate and slab‐anchoring and folding at the 660\xa0km transition zone that result in fluctuations in the slab dip, strain‐stress regime, surface kinematics, and viscous dissipation. After slab‐folding occurs, the gravitational potential energy is dissipated in the form of lithospheric flow causing lithospheric extension in the overriding plate. Conversely, simulations with more buoyant arcs (32–35\xa0km; effective thickness) do not lead to arc‐transference and result in slab break‐off, which causes an asymptotic trend in surface kinematics, viscous dissipation and strain‐stress regime, and lithospheric extension in the overriding plate. The results of our numerical modeling highlight the importance of slab‐anchoring and folding in the 660\xa0km transition zone on increasing the mechanical coupling of the subduction system.', 'identifier': ['10.1029/2022GC010386'], 'funder': [{'@type': 'Organization', 'name': 'University of Melbourne'}]}, 'title': 'The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision', 'description': 'We investigate how the mechanical properties of intra‐oceanic arcs affect the collision style and associated stress‐strain evolution with buoyancy‐driven models of subduction that accurately reproduce the dynamic interaction of the lithosphere and mantle. We performed a series of simulations only varying the effective arc thickness as it controls the buoyancy of intra‐oceanic arcs. Our simulations spontaneously evolve into two contrasting styles of collision that are controlled by a 3% density contrast between the arc and the continental plate. In simulations with less buoyant arcs (15–31\xa0km; effective thickness), we observe arc‐transference to the overriding plate and slab‐anchoring and folding at the 660\xa0km transition zone that result in fluctuations in the slab dip, strain‐stress regime, surface kinematics, and viscous dissipation. After slab‐folding occurs, the gravitational potential energy is dissipated in the form of lithospheric flow causing lithospheric extension in the overriding plate. Conversely, simulations with more buoyant arcs (32–35\xa0km; effective thickness) do not lead to arc‐transference and result in slab break‐off, which causes an asymptotic trend in surface kinematics, viscous dissipation and strain‐stress regime, and lithospheric extension in the overriding plate. The results of our numerical modeling highlight the importance of slab‐anchoring and folding in the 660\xa0km transition zone on increasing the mechanical coupling of the subduction system.', 'authors': [{'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1521-7910', 'givenName': 'Andrés Felipe', 'familyName': 'Rodríguez Corcho', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}, {'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1270-4377', 'givenName': 'Sara', 'familyName': 'Polanco', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-2594-6965', 'givenName': 'Rebecca', 'familyName': 'Farrington', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3891-5444', 'givenName': 'Romain', 'familyName': 'Beucher', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-3553-0787', 'givenName': 'Camilo', 'familyName': 'Montes', 'affiliation': [{'@type': 'Organization', 'name': 'Department of Physics and Geosciences Universidad del Norte Barranquilla Colombia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3685-174X', 'givenName': 'Louis', 'familyName': 'Moresi', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}], 'keywords': ['arc continent collision', 'arc buoyancy', 'contrasting style of collision', 'lithospheric flow'], 'funder': [{'@type': 'Organization', 'name': 'University of Melbourne'}], 'include_model_code': True, 'model_code_uri': 'https://zenodo.org/records/5153073', 'software': {'codeRepository': 'https://github.com/underworldcode/underworld2', 'keywords': ['Python', 'Finite element']}, 'computer_uri': 'https://doi.org/10.25914/608bfd1838db2'}

github-actions[bot] commented 5 months ago

Thank you for submitting. Please check the output below, and fix any errors, etc.

Errors and Warnings

Include model output data? Error: no selection made Model output URI/DOI Warning: No URI/DOI provided. Software Framework DOI/URI Error fetching metadata: 404 Client Error: NOT FOUND for url: https://zenodo.org/api/records/org/records/5153073 Error: unable to parse software metadata. 'doi_url' Name of primary software framework Error: no name found Software framework authors Error: no authors found

Parsed data

Section 1: Summary of your model

Creator/Contributor Creator/contributor is Timothy White (0000-0002-6980-3392)

Model Repository Slug Model repo will be created with name white_2017_pleiades

Field of Research (FoR) Codes

License Creative Commons Attribution 4.0 International

Model Category

Associated Publication Found publication: The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision

Title The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision

Description We investigate how the mechanical properties of intra‐oceanic arcs affect the collision style and associated stress‐strain evolution with buoyancy‐driven models of subduction that accurately reproduce the dynamic interaction of the lithosphere and mantle. We performed a series of simulations only varying the effective arc thickness as it controls the buoyancy of intra‐oceanic arcs. Our simulations spontaneously evolve into two contrasting styles of collision that are controlled by a 3% density contrast between the arc and the continental plate. In simulations with less buoyant arcs (15–31 km; effective thickness), we observe arc‐transference to the overriding plate and slab‐anchoring and folding at the 660 km transition zone that result in fluctuations in the slab dip, strain‐stress regime, surface kinematics, and viscous dissipation. After slab‐folding occurs, the gravitational potential energy is dissipated in the form of lithospheric flow causing lithospheric extension in the overriding plate. Conversely, simulations with more buoyant arcs (32–35 km; effective thickness) do not lead to arc‐transference and result in slab break‐off, which causes an asymptotic trend in surface kinematics, viscous dissipation and strain‐stress regime, and lithospheric extension in the overriding plate. The results of our numerical modeling highlight the importance of slab‐anchoring and folding in the 660 km transition zone on increasing the mechanical coupling of the subduction system.

Model Authors

Scientific Keywords

Funder

Section 2: your model code, output data

Include model code? True

Model code URI/DOI https://zenodo.org/records/5153073

Section 3: software framework and compute details

Software Repository https://github.com/underworldcode/underworld2

Software & algorithm keywords

Computer URI/DOI https://doi.org/10.25914/608bfd1838db2

Section 4: web material (for mate.science)

Dumping dictionary during testing{'creator': {'@type': 'Person', '@id': 'https://orcid.org/0000-0002-6980-3392', 'givenName': 'Timothy', 'familyName': 'White', 'affiliation': [{'@type': 'Organization', 'name': 'University of Sydney'}]}, 'slug': 'white_2017_pleiades', 'for_codes': [{'@id': '#FoR_510102', '@type': 'DefinedTerm', 'name': 'Astronomical instrumentation'}, {'@id': '#FoR_510109', '@type': 'DefinedTerm', 'name': 'Stellar astronomy and planetary systems'}, {'@id': '#FoR_490304', '@type': 'DefinedTerm', 'name': 'Optimisation '}], 'license': {'name': 'Creative Commons Attribution 4.0 International', 'url': 'https://creativecommons.org/licenses/by/4.0/legalcode'}, 'model_category': ['model published in study', 'attempted reproduction of a model'], 'publication': {'@type': 'ScholarlyArticle', '@id': 'http://dx.doi.org/10.1029/2022gc010386', 'name': 'The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision', 'isPartOf': ({'@type': 'PublicationIssue', 'issueNumber': '11', 'datePublished': '2022-11', 'isPartOf': {'@type': ['PublicationVolume', 'Periodical'], 'name': ['Geochemistry, Geophysics, Geosystems'], 'issn': ['1525-2027', '1525-2027'], 'volumeNumber': '23', 'publisher': 'American Geophysical Union (AGU)'}},), 'author': [{'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1521-7910', 'givenName': 'Andrés Felipe', 'familyName': 'Rodríguez Corcho', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}, {'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1270-4377', 'givenName': 'Sara', 'familyName': 'Polanco', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-2594-6965', 'givenName': 'Rebecca', 'familyName': 'Farrington', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3891-5444', 'givenName': 'Romain', 'familyName': 'Beucher', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-3553-0787', 'givenName': 'Camilo', 'familyName': 'Montes', 'affiliation': [{'@type': 'Organization', 'name': 'Department of Physics and Geosciences Universidad del Norte Barranquilla Colombia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3685-174X', 'givenName': 'Louis', 'familyName': 'Moresi', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}], 'abstract': 'We investigate how the mechanical properties of intra‐oceanic arcs affect the collision style and associated stress‐strain evolution with buoyancy‐driven models of subduction that accurately reproduce the dynamic interaction of the lithosphere and mantle. We performed a series of simulations only varying the effective arc thickness as it controls the buoyancy of intra‐oceanic arcs. Our simulations spontaneously evolve into two contrasting styles of collision that are controlled by a 3% density contrast between the arc and the continental plate. In simulations with less buoyant arcs (15–31\xa0km; effective thickness), we observe arc‐transference to the overriding plate and slab‐anchoring and folding at the 660\xa0km transition zone that result in fluctuations in the slab dip, strain‐stress regime, surface kinematics, and viscous dissipation. After slab‐folding occurs, the gravitational potential energy is dissipated in the form of lithospheric flow causing lithospheric extension in the overriding plate. Conversely, simulations with more buoyant arcs (32–35\xa0km; effective thickness) do not lead to arc‐transference and result in slab break‐off, which causes an asymptotic trend in surface kinematics, viscous dissipation and strain‐stress regime, and lithospheric extension in the overriding plate. The results of our numerical modeling highlight the importance of slab‐anchoring and folding in the 660\xa0km transition zone on increasing the mechanical coupling of the subduction system.', 'identifier': ['10.1029/2022GC010386'], 'funder': [{'@type': 'Organization', 'name': 'University of Melbourne'}]}, 'title': 'The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision', 'description': 'We investigate how the mechanical properties of intra‐oceanic arcs affect the collision style and associated stress‐strain evolution with buoyancy‐driven models of subduction that accurately reproduce the dynamic interaction of the lithosphere and mantle. We performed a series of simulations only varying the effective arc thickness as it controls the buoyancy of intra‐oceanic arcs. Our simulations spontaneously evolve into two contrasting styles of collision that are controlled by a 3% density contrast between the arc and the continental plate. In simulations with less buoyant arcs (15–31\xa0km; effective thickness), we observe arc‐transference to the overriding plate and slab‐anchoring and folding at the 660\xa0km transition zone that result in fluctuations in the slab dip, strain‐stress regime, surface kinematics, and viscous dissipation. After slab‐folding occurs, the gravitational potential energy is dissipated in the form of lithospheric flow causing lithospheric extension in the overriding plate. Conversely, simulations with more buoyant arcs (32–35\xa0km; effective thickness) do not lead to arc‐transference and result in slab break‐off, which causes an asymptotic trend in surface kinematics, viscous dissipation and strain‐stress regime, and lithospheric extension in the overriding plate. The results of our numerical modeling highlight the importance of slab‐anchoring and folding in the 660\xa0km transition zone on increasing the mechanical coupling of the subduction system.', 'authors': [{'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1521-7910', 'givenName': 'Andrés Felipe', 'familyName': 'Rodríguez Corcho', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}, {'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1270-4377', 'givenName': 'Sara', 'familyName': 'Polanco', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-2594-6965', 'givenName': 'Rebecca', 'familyName': 'Farrington', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3891-5444', 'givenName': 'Romain', 'familyName': 'Beucher', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-3553-0787', 'givenName': 'Camilo', 'familyName': 'Montes', 'affiliation': [{'@type': 'Organization', 'name': 'Department of Physics and Geosciences Universidad del Norte Barranquilla Colombia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3685-174X', 'givenName': 'Louis', 'familyName': 'Moresi', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}], 'keywords': ['arc continent collision', 'arc buoyancy', 'contrasting style of collision', 'lithospheric flow'], 'funder': [{'@type': 'Organization', 'name': 'University of Melbourne'}], 'include_model_code': True, 'model_code_uri': 'https://zenodo.org/records/5153073', 'software': {'codeRepository': 'https://github.com/underworldcode/underworld2', 'keywords': ['Python', 'Finite element']}, 'computer_uri': 'https://doi.org/10.25914/608bfd1838db2'}

github-actions[bot] commented 5 months ago

Thank you for submitting. Please check the output below, and fix any errors, etc.

Errors and Warnings

Include model output data? Error: no selection made Model output URI/DOI Warning: No URI/DOI provided. Software Framework DOI/URI Error: unable to parse software metadata. 'doi_url' Name of primary software framework Error: no name found Software framework authors Error: no authors found

Parsed data

Section 1: Summary of your model

Creator/Contributor Creator/contributor is Timothy White (0000-0002-6980-3392)

Model Repository Slug Model repo will be created with name white_2017_pleiades

Field of Research (FoR) Codes

License Creative Commons Attribution 4.0 International

Model Category

Associated Publication Found publication: The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision

Title The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision

Description We investigate how the mechanical properties of intra‐oceanic arcs affect the collision style and associated stress‐strain evolution with buoyancy‐driven models of subduction that accurately reproduce the dynamic interaction of the lithosphere and mantle. We performed a series of simulations only varying the effective arc thickness as it controls the buoyancy of intra‐oceanic arcs. Our simulations spontaneously evolve into two contrasting styles of collision that are controlled by a 3% density contrast between the arc and the continental plate. In simulations with less buoyant arcs (15–31 km; effective thickness), we observe arc‐transference to the overriding plate and slab‐anchoring and folding at the 660 km transition zone that result in fluctuations in the slab dip, strain‐stress regime, surface kinematics, and viscous dissipation. After slab‐folding occurs, the gravitational potential energy is dissipated in the form of lithospheric flow causing lithospheric extension in the overriding plate. Conversely, simulations with more buoyant arcs (32–35 km; effective thickness) do not lead to arc‐transference and result in slab break‐off, which causes an asymptotic trend in surface kinematics, viscous dissipation and strain‐stress regime, and lithospheric extension in the overriding plate. The results of our numerical modeling highlight the importance of slab‐anchoring and folding in the 660 km transition zone on increasing the mechanical coupling of the subduction system.

Model Authors

Scientific Keywords

Funder

Section 2: your model code, output data

Include model code? True

Model code URI/DOI https://zenodo.org/records/5153073

Section 3: software framework and compute details

Software Repository https://github.com/underworldcode/underworld2

Software & algorithm keywords

Computer URI/DOI https://doi.org/10.25914/608bfd1838db2

Section 4: web material (for mate.science)

Dumping dictionary during testing{'creator': {'@type': 'Person', '@id': 'https://orcid.org/0000-0002-6980-3392', 'givenName': 'Timothy', 'familyName': 'White', 'affiliation': [{'@type': 'Organization', 'name': 'University of Sydney'}]}, 'slug': 'white_2017_pleiades', 'for_codes': [{'@id': '#FoR_510102', '@type': 'DefinedTerm', 'name': 'Astronomical instrumentation'}, {'@id': '#FoR_510109', '@type': 'DefinedTerm', 'name': 'Stellar astronomy and planetary systems'}, {'@id': '#FoR_490304', '@type': 'DefinedTerm', 'name': 'Optimisation '}], 'license': {'name': 'Creative Commons Attribution 4.0 International', 'url': 'https://creativecommons.org/licenses/by/4.0/legalcode'}, 'model_category': ['model published in study', 'attempted reproduction of a model'], 'publication': {'@type': 'ScholarlyArticle', '@id': 'http://dx.doi.org/10.1029/2022gc010386', 'name': 'The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision', 'isPartOf': ({'@type': 'PublicationIssue', 'issueNumber': '11', 'datePublished': '2022-11', 'isPartOf': {'@type': ['PublicationVolume', 'Periodical'], 'name': ['Geochemistry, Geophysics, Geosystems'], 'issn': ['1525-2027', '1525-2027'], 'volumeNumber': '23', 'publisher': 'American Geophysical Union (AGU)'}},), 'author': [{'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1521-7910', 'givenName': 'Andrés Felipe', 'familyName': 'Rodríguez Corcho', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}, {'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1270-4377', 'givenName': 'Sara', 'familyName': 'Polanco', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-2594-6965', 'givenName': 'Rebecca', 'familyName': 'Farrington', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3891-5444', 'givenName': 'Romain', 'familyName': 'Beucher', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-3553-0787', 'givenName': 'Camilo', 'familyName': 'Montes', 'affiliation': [{'@type': 'Organization', 'name': 'Department of Physics and Geosciences Universidad del Norte Barranquilla Colombia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3685-174X', 'givenName': 'Louis', 'familyName': 'Moresi', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}], 'abstract': 'We investigate how the mechanical properties of intra‐oceanic arcs affect the collision style and associated stress‐strain evolution with buoyancy‐driven models of subduction that accurately reproduce the dynamic interaction of the lithosphere and mantle. We performed a series of simulations only varying the effective arc thickness as it controls the buoyancy of intra‐oceanic arcs. Our simulations spontaneously evolve into two contrasting styles of collision that are controlled by a 3% density contrast between the arc and the continental plate. In simulations with less buoyant arcs (15–31\xa0km; effective thickness), we observe arc‐transference to the overriding plate and slab‐anchoring and folding at the 660\xa0km transition zone that result in fluctuations in the slab dip, strain‐stress regime, surface kinematics, and viscous dissipation. After slab‐folding occurs, the gravitational potential energy is dissipated in the form of lithospheric flow causing lithospheric extension in the overriding plate. Conversely, simulations with more buoyant arcs (32–35\xa0km; effective thickness) do not lead to arc‐transference and result in slab break‐off, which causes an asymptotic trend in surface kinematics, viscous dissipation and strain‐stress regime, and lithospheric extension in the overriding plate. The results of our numerical modeling highlight the importance of slab‐anchoring and folding in the 660\xa0km transition zone on increasing the mechanical coupling of the subduction system.', 'identifier': ['10.1029/2022GC010386'], 'funder': [{'@type': 'Organization', 'name': 'University of Melbourne'}]}, 'title': 'The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision', 'description': 'We investigate how the mechanical properties of intra‐oceanic arcs affect the collision style and associated stress‐strain evolution with buoyancy‐driven models of subduction that accurately reproduce the dynamic interaction of the lithosphere and mantle. We performed a series of simulations only varying the effective arc thickness as it controls the buoyancy of intra‐oceanic arcs. Our simulations spontaneously evolve into two contrasting styles of collision that are controlled by a 3% density contrast between the arc and the continental plate. In simulations with less buoyant arcs (15–31\xa0km; effective thickness), we observe arc‐transference to the overriding plate and slab‐anchoring and folding at the 660\xa0km transition zone that result in fluctuations in the slab dip, strain‐stress regime, surface kinematics, and viscous dissipation. After slab‐folding occurs, the gravitational potential energy is dissipated in the form of lithospheric flow causing lithospheric extension in the overriding plate. Conversely, simulations with more buoyant arcs (32–35\xa0km; effective thickness) do not lead to arc‐transference and result in slab break‐off, which causes an asymptotic trend in surface kinematics, viscous dissipation and strain‐stress regime, and lithospheric extension in the overriding plate. The results of our numerical modeling highlight the importance of slab‐anchoring and folding in the 660\xa0km transition zone on increasing the mechanical coupling of the subduction system.', 'authors': [{'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1521-7910', 'givenName': 'Andrés Felipe', 'familyName': 'Rodríguez Corcho', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}, {'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1270-4377', 'givenName': 'Sara', 'familyName': 'Polanco', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-2594-6965', 'givenName': 'Rebecca', 'familyName': 'Farrington', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3891-5444', 'givenName': 'Romain', 'familyName': 'Beucher', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-3553-0787', 'givenName': 'Camilo', 'familyName': 'Montes', 'affiliation': [{'@type': 'Organization', 'name': 'Department of Physics and Geosciences Universidad del Norte Barranquilla Colombia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3685-174X', 'givenName': 'Louis', 'familyName': 'Moresi', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}], 'keywords': ['arc continent collision', 'arc buoyancy', 'contrasting style of collision', 'lithospheric flow'], 'funder': [{'@type': 'Organization', 'name': 'University of Melbourne'}], 'include_model_code': True, 'model_code_uri': 'https://zenodo.org/records/5153073', 'software': {'codeRepository': 'https://github.com/underworldcode/underworld2', 'keywords': ['Python', 'Finite element']}, 'computer_uri': 'https://doi.org/10.25914/608bfd1838db2'}

github-actions[bot] commented 5 months ago

Thank you for submitting. Please check the output below, and fix any errors, etc.

Errors and Warnings

Include model output data? Error: no selection made Model output URI/DOI Warning: No URI/DOI provided.

Parsed data

Section 1: Summary of your model

Creator/Contributor Creator/contributor is Timothy White (0000-0002-6980-3392)

Model Repository Slug Model repo will be created with name white_2017_pleiades

Field of Research (FoR) Codes

License Creative Commons Attribution 4.0 International

Model Category

Associated Publication Found publication: The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision

Title The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision

Description We investigate how the mechanical properties of intra‐oceanic arcs affect the collision style and associated stress‐strain evolution with buoyancy‐driven models of subduction that accurately reproduce the dynamic interaction of the lithosphere and mantle. We performed a series of simulations only varying the effective arc thickness as it controls the buoyancy of intra‐oceanic arcs. Our simulations spontaneously evolve into two contrasting styles of collision that are controlled by a 3% density contrast between the arc and the continental plate. In simulations with less buoyant arcs (15–31 km; effective thickness), we observe arc‐transference to the overriding plate and slab‐anchoring and folding at the 660 km transition zone that result in fluctuations in the slab dip, strain‐stress regime, surface kinematics, and viscous dissipation. After slab‐folding occurs, the gravitational potential energy is dissipated in the form of lithospheric flow causing lithospheric extension in the overriding plate. Conversely, simulations with more buoyant arcs (32–35 km; effective thickness) do not lead to arc‐transference and result in slab break‐off, which causes an asymptotic trend in surface kinematics, viscous dissipation and strain‐stress regime, and lithospheric extension in the overriding plate. The results of our numerical modeling highlight the importance of slab‐anchoring and folding in the 660 km transition zone on increasing the mechanical coupling of the subduction system.

Model Authors

Scientific Keywords

Funder

Section 2: your model code, output data

Include model code? True

Model code URI/DOI https://zenodo.org/records/5153073

Section 3: software framework and compute details

Software Framework DOI/URI Found software: ASPECT v2.3.0

Software Repository https://github.com/underworldcode/underworld2

Name of primary software framework ASPECT v2.3.0Software framework authors

Software & algorithm keywords

Computer URI/DOI https://doi.org/10.25914/608bfd1838db2

Section 4: web material (for mate.science)

Dumping dictionary during testing{'creator': {'@type': 'Person', '@id': 'https://orcid.org/0000-0002-6980-3392', 'givenName': 'Timothy', 'familyName': 'White', 'affiliation': [{'@type': 'Organization', 'name': 'University of Sydney'}]}, 'slug': 'white_2017_pleiades', 'for_codes': [{'@id': '#FoR_510102', '@type': 'DefinedTerm', 'name': 'Astronomical instrumentation'}, {'@id': '#FoR_510109', '@type': 'DefinedTerm', 'name': 'Stellar astronomy and planetary systems'}, {'@id': '#FoR_490304', '@type': 'DefinedTerm', 'name': 'Optimisation '}], 'license': {'name': 'Creative Commons Attribution 4.0 International', 'url': 'https://creativecommons.org/licenses/by/4.0/legalcode'}, 'model_category': ['model published in study', 'attempted reproduction of a model'], 'publication': {'@type': 'ScholarlyArticle', '@id': 'http://dx.doi.org/10.1029/2022gc010386', 'name': 'The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision', 'isPartOf': ({'@type': 'PublicationIssue', 'issueNumber': '11', 'datePublished': '2022-11', 'isPartOf': {'@type': ['PublicationVolume', 'Periodical'], 'name': ['Geochemistry, Geophysics, Geosystems'], 'issn': ['1525-2027', '1525-2027'], 'volumeNumber': '23', 'publisher': 'American Geophysical Union (AGU)'}},), 'author': [{'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1521-7910', 'givenName': 'Andrés Felipe', 'familyName': 'Rodríguez Corcho', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}, {'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1270-4377', 'givenName': 'Sara', 'familyName': 'Polanco', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-2594-6965', 'givenName': 'Rebecca', 'familyName': 'Farrington', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3891-5444', 'givenName': 'Romain', 'familyName': 'Beucher', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-3553-0787', 'givenName': 'Camilo', 'familyName': 'Montes', 'affiliation': [{'@type': 'Organization', 'name': 'Department of Physics and Geosciences Universidad del Norte Barranquilla Colombia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3685-174X', 'givenName': 'Louis', 'familyName': 'Moresi', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}], 'abstract': 'We investigate how the mechanical properties of intra‐oceanic arcs affect the collision style and associated stress‐strain evolution with buoyancy‐driven models of subduction that accurately reproduce the dynamic interaction of the lithosphere and mantle. We performed a series of simulations only varying the effective arc thickness as it controls the buoyancy of intra‐oceanic arcs. Our simulations spontaneously evolve into two contrasting styles of collision that are controlled by a 3% density contrast between the arc and the continental plate. In simulations with less buoyant arcs (15–31\xa0km; effective thickness), we observe arc‐transference to the overriding plate and slab‐anchoring and folding at the 660\xa0km transition zone that result in fluctuations in the slab dip, strain‐stress regime, surface kinematics, and viscous dissipation. After slab‐folding occurs, the gravitational potential energy is dissipated in the form of lithospheric flow causing lithospheric extension in the overriding plate. Conversely, simulations with more buoyant arcs (32–35\xa0km; effective thickness) do not lead to arc‐transference and result in slab break‐off, which causes an asymptotic trend in surface kinematics, viscous dissipation and strain‐stress regime, and lithospheric extension in the overriding plate. The results of our numerical modeling highlight the importance of slab‐anchoring and folding in the 660\xa0km transition zone on increasing the mechanical coupling of the subduction system.', 'identifier': ['10.1029/2022GC010386'], 'funder': [{'@type': 'Organization', 'name': 'University of Melbourne'}]}, 'title': 'The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision', 'description': 'We investigate how the mechanical properties of intra‐oceanic arcs affect the collision style and associated stress‐strain evolution with buoyancy‐driven models of subduction that accurately reproduce the dynamic interaction of the lithosphere and mantle. We performed a series of simulations only varying the effective arc thickness as it controls the buoyancy of intra‐oceanic arcs. Our simulations spontaneously evolve into two contrasting styles of collision that are controlled by a 3% density contrast between the arc and the continental plate. In simulations with less buoyant arcs (15–31\xa0km; effective thickness), we observe arc‐transference to the overriding plate and slab‐anchoring and folding at the 660\xa0km transition zone that result in fluctuations in the slab dip, strain‐stress regime, surface kinematics, and viscous dissipation. After slab‐folding occurs, the gravitational potential energy is dissipated in the form of lithospheric flow causing lithospheric extension in the overriding plate. Conversely, simulations with more buoyant arcs (32–35\xa0km; effective thickness) do not lead to arc‐transference and result in slab break‐off, which causes an asymptotic trend in surface kinematics, viscous dissipation and strain‐stress regime, and lithospheric extension in the overriding plate. The results of our numerical modeling highlight the importance of slab‐anchoring and folding in the 660\xa0km transition zone on increasing the mechanical coupling of the subduction system.', 'authors': [{'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1521-7910', 'givenName': 'Andrés Felipe', 'familyName': 'Rodríguez Corcho', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}, {'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1270-4377', 'givenName': 'Sara', 'familyName': 'Polanco', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-2594-6965', 'givenName': 'Rebecca', 'familyName': 'Farrington', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3891-5444', 'givenName': 'Romain', 'familyName': 'Beucher', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-3553-0787', 'givenName': 'Camilo', 'familyName': 'Montes', 'affiliation': [{'@type': 'Organization', 'name': 'Department of Physics and Geosciences Universidad del Norte Barranquilla Colombia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3685-174X', 'givenName': 'Louis', 'familyName': 'Moresi', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}], 'keywords': ['arc continent collision', 'arc buoyancy', 'contrasting style of collision', 'lithospheric flow'], 'funder': [{'@type': 'Organization', 'name': 'University of Melbourne'}], 'include_model_code': True, 'model_code_uri': 'https://zenodo.org/records/5153073', 'software': {'@type': 'SoftwareApplication', '@id': 'https://doi.org/10.5281/zenodo.5131909', 'name': 'ASPECT v2.3.0', 'softwareVersion': 'v2.3.0', 'author': [{'@type': 'Person', '@id': '0000-0003-2311-9402', 'name': 'Wolfgang Bangerth', 'affiliation': 'Colorado State University'}, {'@type': 'Person', '@id': '0000-0003-0357-7115', 'name': 'Juliane Dannberg', 'affiliation': 'University of Florida'}, {'@type': 'Person', 'name': 'Menno Fraters', 'affiliation': 'University of California, Davis'}, {'@type': 'Person', '@id': '0000-0001-7098-8198', 'name': 'Rene Gassmoeller', 'affiliation': 'University of Florida'}, {'@type': 'Person', 'name': 'Anne Glerum', 'affiliation': 'Geoforschungszentrum Potsdam, Germany'}, {'@type': 'Person', '@id': '0000-0002-8137-3903', 'name': 'Timo Heister', 'affiliation': 'Clemson University'}, {'@type': 'Person', 'name': 'John Naliboff', 'affiliation': 'New Mexico Tech'}], 'codeRepository': 'https://github.com/underworldcode/underworld2', 'keywords': ['Python', 'Finite element']}, 'computer_uri': 'https://doi.org/10.25914/608bfd1838db2'}

github-actions[bot] commented 5 months ago

A review of this submission has been requested from @hvidy