hvidy / PIPE-4002-EarthByte-ModelAtlas

SIH repo for work on PIPE-4002
0 stars 0 forks source link

New model test: re. corcho 2022 #27

Open dansand opened 8 months ago

dansand commented 8 months ago

-> creator/contributor ORCID (or name)

0000-0002-1521-7910

-> slug

corcho_2022_collision

-> field of Research (FoR) Codes

370604

-> license

MIT

-> model category

model published in study

-> associated publication DOI

http://dx.doi.org/10.1029/2022gc010386

-> title

No response

-> description

No response

-> model authors

No response

-> scientific keywords

Subduction, collision, arcs

-> funder

Asociación Colombiana de Geólogos y Geofísicos del Petróleo, Australian Research Council

-> include model code ?

-> model code URI/DOI

No response

-> include model output data?

-> model output URI/DOI

No response

-> software framework DOI/URI

10.5281/zenodo.5606117

-> software framework source repository

https://github.com/underworldcode/UWGeodynamics

-> name of primary software framework (e.g. Underworld, ASPECT, Badlands, OpenFOAM)

No response

-> software framework authors

No response

-> software & algorithm keywords

Python, C, finite element,

-> computer URI/DOI

No response

-> add landing page image and caption

landing_image Here is a caption for the image written on a new line beneath the image link.

-> add an animation (if relevant)

No response

-> add a graphic abstract figure (if relevant)

Here is a caption for the image written on a separate line above the image link.

graphic_abstract

-> add a model setup figure (if relevant)

model_setupHere is a caption for the image written on a the same line above the image link.

-> add a description of your model setup

Here is a description of the model setup. Here is a description of the model setup. Here is a description of the model setup

github-actions[bot] commented 8 months ago

Thank you for submitting. Please check the output below, and fix any errors, etc.

Errors and Warnings

Funder Unable to find ROR for Asociación Colombiana de Geólogos y Geofísicos del Petróleo Unable to find ROR for Australian Research Council Model code URI/DOI Warning: No URI/DOI provided. Model output URI/DOI Warning: No URI/DOI provided. Computer URI/DOI Warning: No URI/DOI provided. Animation Warning: No animation uploaded.

Model setup figure Error: No caption found for image.

Parsed data

Section 1: Summary of your model

Creator/Contributor Creator/contributor is Andres Felipe Rodriguez Corcho (0000-0002-1521-7910)

Model Repository Slug Model repo will be created with name corcho_2022_collision

Field of Research (FoR) Codes

License MIT License

Model Category

Associated Publication Found publication: The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision

Title The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision

Description We investigate how the mechanical properties of intra‐oceanic arcs affect the collision style and associated stress‐strain evolution with buoyancy‐driven models of subduction that accurately reproduce the dynamic interaction of the lithosphere and mantle. We performed a series of simulations only varying the effective arc thickness as it controls the buoyancy of intra‐oceanic arcs. Our simulations spontaneously evolve into two contrasting styles of collision that are controlled by a 3% density contrast between the arc and the continental plate. In simulations with less buoyant arcs (15–31 km; effective thickness), we observe arc‐transference to the overriding plate and slab‐anchoring and folding at the 660 km transition zone that result in fluctuations in the slab dip, strain‐stress regime, surface kinematics, and viscous dissipation. After slab‐folding occurs, the gravitational potential energy is dissipated in the form of lithospheric flow causing lithospheric extension in the overriding plate. Conversely, simulations with more buoyant arcs (32–35 km; effective thickness) do not lead to arc‐transference and result in slab break‐off, which causes an asymptotic trend in surface kinematics, viscous dissipation and strain‐stress regime, and lithospheric extension in the overriding plate. The results of our numerical modeling highlight the importance of slab‐anchoring and folding in the 660 km transition zone on increasing the mechanical coupling of the subduction system.

Model Authors

Scientific Keywords

Funder

Section 2: your model code, output data

Include model code? True

Include model output data? True

Section 3: software framework and compute details

Software Framework DOI/URI Found software: UWGeodynamics: A teaching an research tool for numerical geodynamic modelling

Software Repository https://github.com/underworldcode/UWGeodynamics

Name of primary software framework UWGeodynamics: A teaching an research tool for numerical geodynamic modelling

Software framework authors

Software & algorithm keywords

Section 4: web material (for mate.science)

Landing page image Filename: landing_image.png Caption: Here is a caption for the image written on a new line beneath the image link.

Graphic abstract Filename: graphic_abstract.png Caption: Here is a caption for the image written on a separate line above the image link.

Model setup figure Filename: model_setup.jpg Caption:

Model setup description Here is a description of the model setup. Here is a description of the model setup. Here is a description of the model setup

Dumping dictionary during testing {'creator': {'@type': 'Person', '@id': 'https://orcid.org/0000-0002-1521-7910', 'givenName': 'Andres Felipe', 'familyName': 'Rodriguez Corcho'}, 'slug': 'corcho_2022_collision', 'for_codes': [{'@id': '#FoR_370604', '@type': 'DefinedTerm', 'name': 'Geodynamics'}], 'license': {'name': 'MIT License', 'url': 'https://opensource.org/license/mit/'}, 'model_category': ['model published in study'], 'publication': {'@type': 'ScholarlyArticle', '@id': 'http://dx.doi.org/10.1029/2022gc010386', 'name': 'The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision', 'isPartOf': ({'@type': 'PublicationIssue', 'issueNumber': '11', 'datePublished': '2022-11', 'isPartOf': {'@type': ['PublicationVolume', 'Periodical'], 'name': ['Geochemistry, Geophysics, Geosystems'], 'issn': ['1525-2027', '1525-2027'], 'volumeNumber': '23', 'publisher': 'American Geophysical Union (AGU)'}},), 'author': [{'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1521-7910', 'givenName': 'Andrés Felipe', 'familyName': 'Rodríguez Corcho', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}, {'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1270-4377', 'givenName': 'Sara', 'familyName': 'Polanco', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-2594-6965', 'givenName': 'Rebecca', 'familyName': 'Farrington', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3891-5444', 'givenName': 'Romain', 'familyName': 'Beucher', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-3553-0787', 'givenName': 'Camilo', 'familyName': 'Montes', 'affiliation': [{'@type': 'Organization', 'name': 'Department of Physics and Geosciences Universidad del Norte Barranquilla Colombia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3685-174X', 'givenName': 'Louis', 'familyName': 'Moresi', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}], 'abstract': 'We investigate how the mechanical properties of intra‐oceanic arcs affect the collision style and associated stress‐strain evolution with buoyancy‐driven models of subduction that accurately reproduce the dynamic interaction of the lithosphere and mantle. We performed a series of simulations only varying the effective arc thickness as it controls the buoyancy of intra‐oceanic arcs. Our simulations spontaneously evolve into two contrasting styles of collision that are controlled by a 3% density contrast between the arc and the continental plate. In simulations with less buoyant arcs (15–31\xa0km; effective thickness), we observe arc‐transference to the overriding plate and slab‐anchoring and folding at the 660\xa0km transition zone that result in fluctuations in the slab dip, strain‐stress regime, surface kinematics, and viscous dissipation. After slab‐folding occurs, the gravitational potential energy is dissipated in the form of lithospheric flow causing lithospheric extension in the overriding plate. Conversely, simulations with more buoyant arcs (32–35\xa0km; effective thickness) do not lead to arc‐transference and result in slab break‐off, which causes an asymptotic trend in surface kinematics, viscous dissipation and strain‐stress regime, and lithospheric extension in the overriding plate. The results of our numerical modeling highlight the importance of slab‐anchoring and folding in the 660\xa0km transition zone on increasing the mechanical coupling of the subduction system.', 'identifier': ['10.1029/2022GC010386'], 'funder': [{'@type': 'Organization', 'name': 'University of Melbourne'}]}, 'title': 'The Role of Lithospheric‐Deep Mantle Interactions on the Style and Stress Evolution of Arc‐Continent Collision', 'description': 'We investigate how the mechanical properties of intra‐oceanic arcs affect the collision style and associated stress‐strain evolution with buoyancy‐driven models of subduction that accurately reproduce the dynamic interaction of the lithosphere and mantle. We performed a series of simulations only varying the effective arc thickness as it controls the buoyancy of intra‐oceanic arcs. Our simulations spontaneously evolve into two contrasting styles of collision that are controlled by a 3% density contrast between the arc and the continental plate. In simulations with less buoyant arcs (15–31\xa0km; effective thickness), we observe arc‐transference to the overriding plate and slab‐anchoring and folding at the 660\xa0km transition zone that result in fluctuations in the slab dip, strain‐stress regime, surface kinematics, and viscous dissipation. After slab‐folding occurs, the gravitational potential energy is dissipated in the form of lithospheric flow causing lithospheric extension in the overriding plate. Conversely, simulations with more buoyant arcs (32–35\xa0km; effective thickness) do not lead to arc‐transference and result in slab break‐off, which causes an asymptotic trend in surface kinematics, viscous dissipation and strain‐stress regime, and lithospheric extension in the overriding plate. The results of our numerical modeling highlight the importance of slab‐anchoring and folding in the 660\xa0km transition zone on increasing the mechanical coupling of the subduction system.', 'authors': [{'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1521-7910', 'givenName': 'Andrés Felipe', 'familyName': 'Rodríguez Corcho', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}, {'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-1270-4377', 'givenName': 'Sara', 'familyName': 'Polanco', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geosciences University of Sydney Sydney NSW Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-2594-6965', 'givenName': 'Rebecca', 'familyName': 'Farrington', 'affiliation': [{'@type': 'Organization', 'name': 'School of Geography, Earth and Atmospheric Sciences University of Melbourne Melbourne VIC Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3891-5444', 'givenName': 'Romain', 'familyName': 'Beucher', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0002-3553-0787', 'givenName': 'Camilo', 'familyName': 'Montes', 'affiliation': [{'@type': 'Organization', 'name': 'Department of Physics and Geosciences Universidad del Norte Barranquilla Colombia'}]}, {'@type': 'Person', '@id': 'http://orcid.org/0000-0003-3685-174X', 'givenName': 'Louis', 'familyName': 'Moresi', 'affiliation': [{'@type': 'Organization', 'name': 'Research School of Earth Sciences Australian National University Canberra ACT Australia'}]}], 'keywords': ['Subduction', 'collision', 'arcs'], 'funder': [{'@type': 'Organization', 'name': 'Asociación Colombiana de Geólogos y Geofísicos del Petróleo', 'url': 'Asociación Colombiana de Geólogos y Geofísicos del Petróleo'}, {'@type': 'Organization', 'name': 'Australian Research Council', 'url': 'Australian Research Council'}], 'include_model_code': True, 'include_model_output': True, 'software': {'@type': 'SoftwareApplication', '@id': 'https://doi.org/10.5281/zenodo.5606117', 'name': 'UWGeodynamics: A teaching an research tool for numerical geodynamic modelling', 'softwareVersion': 'v2.11.0', 'author': [{'@type': 'Person', '@id': '0000-0003-3891-5444', 'name': 'Romain Beucher', 'affiliation': 'School of Earth Science, The University of Melbourne'}, {'@type': 'Person', '@id': '0000-0003-3685-174X', 'name': 'Louis Moresi', 'affiliation': 'Research School of Earth Sciences, The Australian National University; School of Earth Science, The University of Melbourne'}, {'@type': 'Person', '@id': '0000-0003-4515-9296', 'name': 'Julian Giordani', 'affiliation': 'School of Earth Science, The University of Melbourne'}, {'@type': 'Person', '@id': '0000-0001-5865-1664', 'name': 'John Mansour', 'affiliation': 'Monash eResearch Centre, Monash University'}, {'@type': 'Person', '@id': '0000-0002-2207-6837', 'name': 'Dan Sandiford', 'affiliation': 'University of Tasmania'}, {'@type': 'Person', '@id': '0000-0002-2594-6965', 'name': 'Rebecca Farrington', 'affiliation': 'School of Earth Science, The University of Melbourne'}, {'@type': 'Person', '@id': '0000-0001-7779-509X', 'name': 'Luke Mondy', 'affiliation': 'School of Geosciences, Earthbyte Research Group, The University of Sydney'}, {'@type': 'Person', '@id': '0000-0003-2595-2414', 'name': 'Claire Mallard', 'affiliation': 'School of Geosciences, Earthbyte Research Group, The University of Sydney'}, {'@type': 'Person', '@id': '0000-0002-1767-8593', 'name': 'Patrice Rey', 'affiliation': 'School of Geosciences, Earthbyte Research Group, The University of Sydney'}, {'@type': 'Person', '@id': '0000-0002-9512-7252', 'name': 'Guillaume Duclaux', 'affiliation': 'Laboratoire Géoazur, Université Nice Sophia Antipolis, Nice'}, {'@type': 'Person', '@id': '0000-0001-6303-5671', 'name': 'owen kaluza', 'affiliation': 'Monash eResearch Centre, Monash University'}, {'@type': 'Person', '@id': '0000-0002-3484-7985', 'name': 'Arijit Laik', 'affiliation': 'Department of Earth Science, Faculty of Science, Vrije Universiteit'}, {'@type': 'Person', '@id': '0000-0002-1270-4377', 'name': 'Sara Morón', 'affiliation': 'School of Geosciences, Earthbyte Research Group, The University of Sydney'}], 'codeRepository': 'https://github.com/underworldcode/UWGeodynamics', 'keywords': ['Python', 'C', 'finite element', '']}, 'landing_image': {'filename': 'landing_image.png', 'url': 'https://github.com/hvidy/PIPE-4002-EarthByte-ModelAtlas/assets/10967872/7bd8d475-4246-4e80-809e-b3c49621aea1', 'caption': 'Here is a caption for the image written on a new line beneath the image link.'}, 'graphic_abstract': {'filename': 'graphic_abstract.png', 'url': 'https://github.com/hvidy/PIPE-4002-EarthByte-ModelAtlas/assets/10967872/d3571eda-2d02-4bd6-8162-ddfb190d18e0', 'caption': 'Here is a caption for the image written on a separate line above the image link.'}, 'model_setup_figure': {'filename': 'model_setup.jpg', 'url': 'https://github.com/hvidy/PIPE-4002-EarthByte-ModelAtlas/assets/10967872/d3519334-a9f4-43f9-8ffd-5c0c4537bb6a', 'caption': ''}, 'model_setup_description': 'Here is a description of the model setup. Here is a description of the model setup. Here is a description of the model setup'}

hvidy commented 8 months ago

M@TE crate

{"@context": "https://w3id.org/ro/crate/1.1/context", "@graph": [{"@type": "CreativeWork", "@id": "ro-crate-metadata.json", "conformsTo": {"@id": "https://w3id.org/ro/crate/1.1"}, "about": {"@id": "./"}, "description": "RO-Crate Metadata File Descriptor (this file)"}, {"@id": "./", "@type": "Dataset", "name": "corcho_2022_collision", "description": "We investigate how the mechanical properties of intra\u2010oceanic arcs affect the collision style and associated stress\u2010strain evolution with buoyancy\u2010driven models of subduction that accurately reproduce the dynamic interaction of the lithosphere and mantle. We performed a series of simulations only varying the effective arc thickness as it controls the buoyancy of intra\u2010oceanic arcs. Our simulations spontaneously evolve into two contrasting styles of collision that are controlled by a 3% density contrast between the arc and the continental plate. In simulations with less buoyant arcs (15\u201331\u00a0km; effective thickness), we observe arc\u2010transference to the overriding plate and slab\u2010anchoring and folding at the 660\u00a0km transition zone that result in fluctuations in the slab dip, strain\u2010stress regime, surface kinematics, and viscous dissipation. After slab\u2010folding occurs, the gravitational potential energy is dissipated in the form of lithospheric flow causing lithospheric extension in the overriding plate. Conversely, simulations with more buoyant arcs (32\u201335\u00a0km; effective thickness) do not lead to arc\u2010transference and result in slab break\u2010off, which causes an asymptotic trend in surface kinematics, viscous dissipation and strain\u2010stress regime, and lithospheric extension in the overriding plate. The results of our numerical modeling highlight the importance of slab\u2010anchoring and folding in the 660\u00a0km transition zone on increasing the mechanical coupling of the subduction system.", "creator": {"@id": "https://orcid.org/0000-0002-1521-7910"}, "contributors": [{"@id": "http://orcid.org/0000-0002-1521-7910"}, {"@id": "http://orcid.org/0000-0002-1270-4377"}, {"@id": "http://orcid.org/0000-0002-2594-6965"}, {"@id": "http://orcid.org/0000-0003-3891-5444"}, {"@id": "http://orcid.org/0000-0002-3553-0787"}, {"@id": "http://orcid.org/0000-0003-3685-174X"}], "citation": {"@id": "http://dx.doi.org/10.1029/2022gc010386"}, "publisher": {"@id": "https://ror.org/04yx6dh41"}, "license": {"@id": "https://opensource.org/license/mit/"}, "keywords": ["Subduction", "collision", "arcs"], "about": [{"@id": "#FoR_370604"}], "funder": [{"@id": "Asociaci\u00f3n Colombiana de Ge\u00f3logos y Geof\u00edsicos del Petr\u00f3leo"}, {"@id": "Australian Research Council"}], "Dataset version": "", "Temporal extents": "", "Spatial extents": "", "Dataset lineage information": "", "Dataset format": "", "Dataset status": "", "hasPart": [{"@id": "model_code_inputs"}, {"@id": "model_output_data"}, {"@id": "#datasetCreation"}]}, {"@id": "model_inputs", "@type": ["Dataset", "SoftwareSourceCode"], "description": "Code and inputs for computation model", "creator": {"@id": "https://orcid.org/0000-0002-1521-7910"}, "author": "", "version": "", "programmingLanguage": "", "owl:sameAs": [], "keywords": "", "runtimePlatform": "", "memoryRequirements": "", "processorRequirements": "", "storageRequirements": ""}, {"@id": "model_outputs", "@type": ["Dataset"], "description": "output data for computational model", "creator": {"@id": "https://orcid.org/0000-0002-1521-7910"}, "author": "", "fileFormat": "", "owl:sameAs": []}, {"@id": "#datasetCreation", "@type": "CreateAction", "agent": {"@id": "https://orcid.org/0000-0002-1521-7910"}, "description": "Running the computational model", "startTime": "", "endTime": "", "instrument": [{"@id": "[]"}], "object": {"@id": "model_inputs"}, "result": {"@id": "model_outputs"}}, {"@type": "Person", "@id": "https://orcid.org/0000-0002-1521-7910", "givenName": "Andres Felipe", "familyName": "Rodriguez Corcho"}, {"@type": "Person", "@id": "http://orcid.org/0000-0002-1521-7910", "givenName": "Andr\u00e9s Felipe", "familyName": "Rodr\u00edguez Corcho"}, {"@type": "Person", "@id": "http://orcid.org/0000-0002-1270-4377", "givenName": "Sara", "familyName": "Polanco"}, {"@type": "Person", "@id": "http://orcid.org/0000-0002-2594-6965", "givenName": "Rebecca", "familyName": "Farrington"}, {"@type": "Person", "@id": "http://orcid.org/0000-0003-3891-5444", "givenName": "Romain", "familyName": "Beucher"}, {"@type": "Person", "@id": "http://orcid.org/0000-0002-3553-0787", "givenName": "Camilo", "familyName": "Montes"}, {"@type": "Person", "@id": "http://orcid.org/0000-0003-3685-174X", "givenName": "Louis", "familyName": "Moresi"}, {"@type": "ScholarlyArticle", "@id": "http://dx.doi.org/10.1029/2022gc010386", "name": "The Role of Lithospheric\u2010Deep Mantle Interactions on the Style and Stress Evolution of Arc\u2010Continent Collision", "author": [{"@id": "http://orcid.org/0000-0002-1521-7910"}, {"@id": "http://orcid.org/0000-0002-1270-4377"}, {"@id": "http://orcid.org/0000-0002-2594-6965"}, {"@id": "http://orcid.org/0000-0003-3891-5444"}, {"@id": "http://orcid.org/0000-0002-3553-0787"}, {"@id": "http://orcid.org/0000-0003-3685-174X"}], "abstract": "We investigate how the mechanical properties of intra\u2010oceanic arcs affect the collision style and associated stress\u2010strain evolution with buoyancy\u2010driven models of subduction that accurately reproduce the dynamic interaction of the lithosphere and mantle. We performed a series of simulations only varying the effective arc thickness as it controls the buoyancy of intra\u2010oceanic arcs. Our simulations spontaneously evolve into two contrasting styles of collision that are controlled by a 3% density contrast between the arc and the continental plate. In simulations with less buoyant arcs (15\u201331\u00a0km; effective thickness), we observe arc\u2010transference to the overriding plate and slab\u2010anchoring and folding at the 660\u00a0km transition zone that result in fluctuations in the slab dip, strain\u2010stress regime, surface kinematics, and viscous dissipation. After slab\u2010folding occurs, the gravitational potential energy is dissipated in the form of lithospheric flow causing lithospheric extension in the overriding plate. Conversely, simulations with more buoyant arcs (32\u201335\u00a0km; effective thickness) do not lead to arc\u2010transference and result in slab break\u2010off, which causes an asymptotic trend in surface kinematics, viscous dissipation and strain\u2010stress regime, and lithospheric extension in the overriding plate. The results of our numerical modeling highlight the importance of slab\u2010anchoring and folding in the 660\u00a0km transition zone on increasing the mechanical coupling of the subduction system.", "identifier": ["10.1029/2022GC010386"]}, {"name": "MIT License", "url": "https://opensource.org/license/mit/", "@id": "https://opensource.org/license/mit/"}, {"@id": "#FoR_370604", "@type": "DefinedTerm", "name": "Geodynamics"}, {"@type": "Organization", "name": "Asociaci\u00f3n Colombiana de Ge\u00f3logos y Geof\u00edsicos del Petr\u00f3leo", "url": "Asociaci\u00f3n Colombiana de Ge\u00f3logos y Geof\u00edsicos del Petr\u00f3leo", "@id": "Asociaci\u00f3n Colombiana de Ge\u00f3logos y Geof\u00edsicos del Petr\u00f3leo"}, {"@type": "Organization", "name": "Australian Research Council", "url": "Australian Research Council", "@id": "Australian Research Council"}]}

hvidy commented 8 months ago

Model repository created at https://github.com/hvidy/corcho_2022_collision