Open mariecrane opened 1 year ago
Yes, I plan to update. My last submission to CRAN was rejected and I have to restructure the code to comply with CRAN policies. I just haven't had time to do that.
Looking forward to the new version.
I have come up with an updated version of msigdbr-prepare.R
that uses the latest SQLite format for MSigDB (since the XML version is now deprecated and will disapper).
It fails this check if (length(setdiff(geneset_genes_entrez$human_gene_symbol, ensembl_tbl$human_gene_symbol))) stop()
but if I comment that out everything seems to work at least to a first approximation. I haven't tested this very much... just wanted to give you a pointer to the new SQLite way of doing things by the MSigDB mantainers.
library(dplyr)
library(tidyr)
library(purrr)
library(readr)
library(stringr)
library(usethis)
options(pillar.print_max = 100)
# Import MSigDB gene sets -----
# Define MSigDB download variables
mdb_version <- "2023.2.Hs"
mdb_db <- str_glue("msigdb_v{mdb_version}.db")
mdb_db_zip <- str_glue("{mdb_db}.zip")
mdb_url_base <- "https://data.broadinstitute.org/gsea-msigdb/msigdb"
mdb_db_zip_url <- str_glue("{mdb_url_base}/release/{mdb_version}/{mdb_db_zip}")
# Download the MSigDB SQLite file
options(timeout = 150)
download.file(url = mdb_db_zip_url, destfile = mdb_db_zip)
unzip(mdb_db_zip, exdir = ".")
file.remove(mdb_db_zip)
# Check MSigDB SQLite file size in bytes
utils:::format.object_size(file.size(mdb_db), units = "auto")
# Open database connection to MSigDB SQLite file and extract tables as tibbles
# https://docs.gsea-msigdb.org/#MSigDB/MSigDB_SQLite_Database/
db <- DBI::dbConnect(RSQLite::SQLite(), dbname = mdb_db, flags = RSQLite::SQLITE_RO)
gene_set_source_member <- tbl(db, "gene_set_source_member") %>% as_tibble()
source_member <- tbl(db, "source_member") %>% as_tibble()
gene_set <- tbl(db, "gene_set") %>% as_tibble()
gene_symbol <- tbl(db, "gene_symbol") %>% as_tibble()
gene_set_details <- tbl(db, "gene_set_details") %>% as_tibble()
publication <- tbl(db, "publication") %>% as_tibble()
# Close database connection to MSigDB SQLite and delete the MSigDB SQLite file since it is no longer needed
DBI::dbDisconnect(db)
file.remove(mdb_db)
# Create a table for gene sets
mdb_tbl <- gene_set %>%
inner_join(gene_set_details, join_by(id == gene_set_id)) %>%
left_join(publication, join_by(publication_id == id)) %>%
separate(collection_name, into = c("gs_cat", "gs_subcat"), sep = ":", remove = TRUE, extra = "merge") %>%
select(gs_name = standard_name,
gs_id = systematic_name,
gs_cat,
gs_subcat,
gs_pmid = PMID,
gs_geoid = GEO_id,
gs_exact_source = exact_source,
gs_url = external_details_URL,
gs_description = description_brief) %>%
filter(gs_cat != "ARCHIVED") %>%
replace_na(list(gs_subcat = "", gs_pmid = "", gs_geoid = "", gs_exact_source = "", gs_url = "", gs_description = ""))
# Get the number of gene sets per collection (for testing)
msigdb_category_genesets <- mdb_tbl %>%
distinct(gs_cat, gs_subcat, gs_id) %>%
count(gs_cat, gs_subcat, name = "n_genesets")
msigdb_category_genesets
# Import MSigDB Ensembl mappings -----
# Download the MSigDB Ensembl mappings
ensembl_url <- str_glue("{mdb_url_base}/annotations/human/Human_Ensembl_Gene_ID_MSigDB.v{mdb_version}.chip")
ensembl_tbl <- read_tsv(ensembl_url, progress = FALSE, show_col_types = FALSE)
ensembl_tbl <- ensembl_tbl %>% select(human_ensembl_gene = `Probe Set ID`, human_gene_symbol = `Gene Symbol`)
# Generate a gene sets table -----
# Create a table for gene sets
msigdbr_genesets <- mdb_tbl %>%
distinct() %>%
arrange(gs_name, gs_id)
if (nrow(msigdbr_genesets) != sum(msigdb_category_genesets$n_genesets)) stop()
# Extract gene set members -----
# Create a table for genes in a tidy/long format (one gene per row)
geneset_genes <- gene_set %>%
inner_join(gene_set_details, join_by(id == gene_set_id)) %>%
select(id, systematic_name) %>%
inner_join(gene_set_source_member, join_by(id == gene_set_id)) %>%
inner_join(source_member, join_by(source_member_id == id)) %>%
inner_join(gene_symbol, join_by(gene_symbol_id == id)) %>%
select(gs_id = systematic_name, source_gene = source_id, human_entrez_gene = NCBI_id, human_gene_symbol = symbol) %>%
replace_na(list(human_entrez_gene = 0L, human_gene_symbol = ""))
nrow(geneset_genes) %>% prettyNum(big.mark = ",")
# Check for any strange patterns
geneset_genes %>%
count(source_gene, sort = TRUE) %>%
head(10)
geneset_genes %>%
count(human_gene_symbol, human_entrez_gene, sort = TRUE) %>%
head(10)
# Get the number of members per gene set (for testing)
# Not all members map to unique genes
msigdb_geneset_members <- geneset_genes %>% count(gs_id, name = "n_members")
msigdb_geneset_members
# Confirm that gene set sizes are reasonable
if (min(msigdb_geneset_members$n_members) < 5) stop()
if (max(msigdb_geneset_members$n_members) > 3000) stop()
if (min(geneset_genes$human_entrez_gene, na.rm = TRUE) < 1) stop()
# Skip genes without an Entrez or Ensembl ID
geneset_genes <- geneset_genes %>%
filter(human_entrez_gene > 0 | str_detect(source_gene, "^ENSG000"))
nrow(geneset_genes) %>% prettyNum(big.mark = ",")
# Keep only the relevant fields
geneset_genes <- geneset_genes %>%
distinct(gs_id, source_gene, human_entrez_gene, human_gene_symbol)
nrow(geneset_genes) %>% prettyNum(big.mark = ",")
# Generate gene IDs -----
# Split genes based on if they include Ensembl IDs
# Starting with MSigDB 7.0, Ensembl is the platform annotation authority
# Add internal gene ID to track both Entrez and Ensembl genes
# Using Ensembl IDs as IDs for all genes resulted in a larger data file
geneset_genes_entrez <- geneset_genes %>%
filter(str_detect(source_gene, "^ENSG000", negate = TRUE)) %>%
distinct(gs_id, human_entrez_gene, human_gene_symbol) %>%
mutate(gene_id = human_entrez_gene) %>%
arrange(gs_id, gene_id)
geneset_genes_ensembl <- geneset_genes %>%
filter(str_detect(source_gene, "^ENSG000")) %>%
select(gs_id, human_entrez_gene, human_ensembl_gene = source_gene, human_gene_symbol) %>%
mutate(human_gene_symbol = if_else(human_gene_symbol == "", human_ensembl_gene, human_gene_symbol)) %>%
mutate(gene_id = str_replace(human_ensembl_gene, "ENSG000", "9")) %>%
mutate(gene_id = as.integer(gene_id)) %>%
arrange(gs_id, gene_id)
# Check that the gene IDs are distinct for Entrez and Ensembl tables
intersect(geneset_genes_entrez$gene_id, geneset_genes_ensembl$gene_id)
# Most gene sets should not have only some source genes as Ensembl IDs
intersect(geneset_genes_entrez$gs_id, geneset_genes_ensembl$gs_id)
# Determine unambiguous genes with only one Entrez and Ensembl ID
clean_entrez_genes <- geneset_genes_ensembl %>%
distinct(human_entrez_gene, human_gene_symbol, human_ensembl_gene) %>%
count(human_entrez_gene) %>%
filter(n == 1) %>%
pull(human_entrez_gene)
length(clean_entrez_genes)
# Use the Entrez ID for unambiguous genes
geneset_genes_ensembl <- geneset_genes_ensembl %>%
mutate(gene_id = if_else(human_entrez_gene %in% clean_entrez_genes, human_entrez_gene, as.character(gene_id))) %>%
arrange(gs_id, gene_id)
# Check the number of genes
nrow(geneset_genes_entrez)
n_distinct(geneset_genes_entrez$gene_id)
n_distinct(geneset_genes_entrez$human_gene_symbol)
n_distinct(geneset_genes_entrez$human_entrez_gene)
nrow(geneset_genes_ensembl)
n_distinct(geneset_genes_ensembl$gene_id)
n_distinct(geneset_genes_ensembl$human_gene_symbol)
n_distinct(geneset_genes_ensembl$human_ensembl_gene)
#### if (length(setdiff(geneset_genes_entrez$human_gene_symbol, ensembl_tbl$human_gene_symbol))) stop()
# Add Ensembl IDs to genes without them
geneset_genes_entrez <- left_join(geneset_genes_entrez, ensembl_tbl, by = "human_gene_symbol")
# Check gene numbers
nrow(geneset_genes_entrez)
n_distinct(geneset_genes_entrez$human_entrez_gene)
n_distinct(geneset_genes_entrez$human_gene_symbol)
n_distinct(geneset_genes_entrez$human_ensembl_gene)
# Generate a gene set members table -----
# Combine Entrez and Ensembl genes into a single table
msigdbr_geneset_genes <-
bind_rows(geneset_genes_entrez, geneset_genes_ensembl) %>%
distinct(gs_id, gene_id) %>%
arrange(gs_id, gene_id)
# Check the total number of gene set members
nrow(msigdbr_geneset_genes) %>% prettyNum(big.mark = ",")
# Check that all the original gene sets are present
if (length(setdiff(msigdb_geneset_members$gs_id, msigdbr_geneset_genes$gs_id)) > 0) stop()
# Check that most of the original gene set members converted to genes
if (nrow(msigdbr_geneset_genes) < (sum(msigdb_geneset_members$n_members) * 0.85)) stop()
genes_members_ratio = full_join(msigdb_geneset_members, count(msigdbr_geneset_genes, gs_id, name = "n_genes"), by = "gs_id")
genes_members_ratio$ratio = genes_members_ratio$n_genes / genes_members_ratio$n_members
if (min(genes_members_ratio$n_genes) < 5) stop()
if (max(genes_members_ratio$n_genes) > 2300) stop()
if (max(genes_members_ratio$ratio) > 1) stop()
if (quantile(genes_members_ratio$ratio, 0.001) < 0.3) stop()
if (quantile(genes_members_ratio$ratio, 0.1) < 0.7) stop()
if (quantile(genes_members_ratio$ratio, 0.2) < 0.9) stop()
if (quantile(genes_members_ratio$ratio, 0.3) < 0.99) stop()
# Generate a genes table -----
# Extract the unique genes
msigdbr_genes <-
bind_rows(geneset_genes_entrez, geneset_genes_ensembl) %>%
select(gene_id, human_gene_symbol, human_entrez_gene, human_ensembl_gene) %>%
distinct() %>%
arrange(human_gene_symbol, gene_id)
# Check the total number of genes
nrow(msigdbr_genes)
# Prepare package -----
# Check the size of final tables
format(object.size(msigdbr_genesets), units = "Mb")
format(object.size(msigdbr_geneset_genes), units = "Mb")
format(object.size(msigdbr_genes), units = "Mb")
# Create package data
use_data(
msigdbr_genesets,
msigdbr_geneset_genes,
msigdbr_genes,
internal = TRUE,
overwrite = TRUE,
compress = "xz"
)
@marcora this was really useful - I noticed a few Reactome genesets for mouse were way different from the updated release and your code worked well; there were only a couple of instances for the left_join
where specifying relationship = "many-to-many"
was needed. Thanks!
Glad it helped! :)
On Fri, Jul 12, 2024 at 11:13 AM gdagstn @.***> wrote:
@marcora https://github.com/marcora this was really useful - I noticed a few Reactome genesets for mouse were way different from the updated release and your code worked well; there were only a couple of instances for the left_join where specifying relationship = "many-to-many" was needed. Thanks!
— Reply to this email directly, view it on GitHub https://github.com/igordot/msigdbr/issues/33#issuecomment-2225802565, or unsubscribe https://github.com/notifications/unsubscribe-auth/AAABRR5GRHVSJGO6FLJ6G7TZL7XC7AVCNFSM6AAAAAA57USGZCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDEMRVHAYDENJWGU . You are receiving this because you were mentioned.Message ID: @.***>
Hi @marcora,
Thank you for the awesome work. I have followed your code and created a personalized updated MSiDB package (version 2024.1.Hs). I am currently using GESECA for my work and would like to know how to subset pathways and corresponding genes similarly to the following line of code: pathwaysDF <- msigdbr("human", category="C2", subcategory="CP:WIKIPATHWAYS")
This might seem like a trivial question, but I would greatly appreciate any guidance you can provide. Thank you!
Thank you for developing this useful tool. Do you have any plans to update it based on the 2023 release of MSigDB?