Closed cjf00000 closed 7 years ago
Unfortunately these results (along with the other GAN Inception score results I'm aware of) have a significant amount of variance between runs. The published numbers were from iter 99999, the first (and only) time we ran that architecture; running it more times might give you a better idea of the distribution of final scores. (Some other papers additionally do early stopping based on Inception score; we opt not to.)
I just re-ran the code from github and I'm getting scores around 8.4, consistent with the reported result:
iter 90999 inception_50k_std 0.0801353901625 acc_fake 0.92029684782 time 0.602583129168 dev_cost 1.91026878357 inception_50k 8.49037361145 cost -1.03681814671 acgan 0.00762330694124 acc_real 0.99734377861 wgan -1.04444146156
iter 91999 inception_50k_std 0.0967662632465 acc_fake 0.920796871185 time 0.602234485626 dev_cost 1.93782782555 inception_50k 8.43902873993 cost -1.04819381237 acgan 0.00605967408046 acc_real 0.997890651226 wgan -1.05425345898
iter 92999 inception_50k_std 0.0917120203376 acc_fake 0.921718776226 time 0.60294954133 dev_cost 1.95800423622 inception_50k 8.38080024719 cost -1.04626512527 acgan 0.00479401694611 acc_real 0.998640596867 wgan -1.05105936527
iter 93999 inception_50k_std 0.0665561929345 acc_fake 0.920562505722 time 0.602898391724 dev_cost 1.95280456543 inception_50k 8.39941883087 cost -1.05967593193 acgan 0.00390187115408 acc_real 0.99874997139 wgan -1.06357777119
iter 94999 inception_50k_std 0.0532421544194 acc_fake 0.91821873188 time 0.602506214857 dev_cost 2.0153901577 inception_50k 8.41933727264 cost -1.06064474583 acgan 0.00334334908985 acc_real 0.999015629292 wgan -1.06398808956
iter 95999 inception_50k_std 0.0951965004206 acc_fake 0.92062497139 time 0.602440204859 dev_cost 2.01981425285 inception_50k 8.35305118561 cost -1.06621205807 acgan 0.00243771215901 acc_real 0.999484360218 wgan -1.06864976883
iter 96999 inception_50k_std 0.0737948045135 acc_fake 0.91759377718 time 0.600785970211 dev_cost 2.05665636063 inception_50k 8.44657325745 cost -1.07846081257 acgan 0.00219427491538 acc_real 0.999593734741 wgan -1.08065497875
iter 97999 inception_50k_std 0.09626429528 acc_fake 0.918624997139 time 0.60149699831 dev_cost 2.06579732895 inception_50k 8.36067008972 cost -1.08249807358 acgan 0.00158038525842 acc_real 0.999859392643 wgan -1.08407831192
iter 98999 inception_50k_std 0.126528963447 acc_fake 0.920156240463 time 0.602736969948 dev_cost 2.07890248299 inception_50k 8.37297153473 cost -1.08571732044 acgan 0.00113835313823 acc_real 0.999953150749 wgan -1.08685576916
iter 99999 inception_50k_std 0.0953019782901 acc_fake 0.918749988079 time 0.601698414564 dev_cost 2.10081338882 inception_50k 8.41027832031 cost -1.09535109997 acgan 0.000875924131833 acc_real 1.0 wgan -1.09622704983
Hi,
Excellent work! I am trying to reproduce the 8.42 +- 0.1 inception score in the paper by running gan_cifar_resnet.py for 100000 iterations (which takes about 3 days). Finally I got 8.15 +- 0.08 inception score. Is it because hyperparameters? Do you have any suggested hyperparameter setting to reproduce the experiment?
Thanks!
iter 93999 inception_50k_std 0.108622521162 acc_fake 0.916953146458 time 1.41457112956 dev_cost 1.73758101463 inception_50k 8.30711174011 cost -1.07328498363 acgan 0.00449406914413 acc_real 0.998765647411 wgan -1.07777905464 iter 94999 inception_50k_std 0.0919005274773 acc_fake 0.917750000954 time 1.41755345893 dev_cost 1.74964499474 inception_50k 8.24363517761 cost -1.08436715603 acgan 0.00362730911002 acc_real 0.999234378338 wgan -1.08799433708 iter 95999 inception_50k_std 0.0791481882334 acc_fake 0.918562471867 time 1.42350446486 dev_cost 1.75195538998 inception_50k 8.18746566772 cost -1.09005200863 acgan 0.00292201270349 acc_real 0.999484360218 wgan -1.09297394753 iter 96999 inception_50k_std 0.0875578373671 acc_fake 0.917046904564 time 1.42211779284 dev_cost 1.7690885067 inception_50k 8.21474838257 cost -1.09408867359 acgan 0.0020965943113 acc_real 0.999828100204 wgan -1.09618532658 iter 97999 inception_50k_std 0.0880940034986 acc_fake 0.917890608311 time 1.42067415953 dev_cost 1.7812871933 inception_50k 8.22119998932 cost -1.09451711178 acgan 0.00177419034299 acc_real 0.999937474728 wgan -1.09629142284 iter 98999 inception_50k_std 0.116663098335 acc_fake 0.916062474251 time 1.42149197221 dev_cost 1.7917330265 inception_50k 8.21636009216 cost -1.10520339012 acgan 0.00143045117147 acc_real 0.999953150749 wgan -1.10663378239 iter 99999 inception_50k_std 0.0829349905252 acc_fake 0.917703151703 time 1.41688520479 dev_cost 1.80293142796 inception_50k 8.14605140686 cost -1.10709547997 acgan 0.00111517717596 acc_real 1.0 wgan -1.10821044445