immich-app / immich

High performance self-hosted photo and video management solution.
https://immich.app
GNU Affero General Public License v3.0
51.16k stars 2.7k forks source link

[BUG] Immich uses a huge amout of ram #3083

Closed OhaDerErste closed 1 year ago

OhaDerErste commented 1 year ago

The bug

My immich vm sometimes around 6 gigs of ram until I restart it. It stays at around 2.5gb after the reboot

The OS that Immich Server is running on

Debian GNU/Linux 11

Version of Immich Server

v1.65.0

Version of Immich Mobile App

v1.65.0

Platform with the issue

Your docker-compose.yml content

version: "3.8"

services:
  immich-server:
    container_name: immich_server
    image: ghcr.io/immich-app/immich-server:release
    command: ["start-server.sh"]
    volumes:
      - ${UPLOAD_LOCATION}:/usr/src/app/upload
    env_file:
      - .env
    depends_on:
      - redis
      - database
      - typesense
    restart: always

  immich-microservices:
    container_name: immich_microservices
    image: ghcr.io/immich-app/immich-server:release
    command: ["start-microservices.sh"]
    volumes:
      - ${UPLOAD_LOCATION}:/usr/src/app/upload
    env_file:
      - .env
    depends_on:
      - redis
      - database
      - typesense
    restart: always

  immich-machine-learning:
    container_name: immich_machine_learning
    image: ghcr.io/immich-app/immich-machine-learning:release
    volumes:
      - ${UPLOAD_LOCATION}:/usr/src/app/upload
      - model-cache:/cache
    env_file:
      - .env
    restart: always

  immich-web:
    container_name: immich_web
    image: ghcr.io/immich-app/immich-web:release
    env_file:
      - .env
    restart: always

  typesense:
    container_name: immich_typesense
    image: typesense/typesense:0.24.0
    environment:
      - TYPESENSE_API_KEY=${TYPESENSE_API_KEY}
      - TYPESENSE_DATA_DIR=/data
    logging:
      driver: none
    volumes:
      - tsdata:/data
    restart: always

  redis:
    container_name: immich_redis
    image: redis:6.2
    restart: always

  database:
    container_name: immich_postgres
    image: postgres:14
    env_file:
      - .env
    environment:
      POSTGRES_PASSWORD: ${DB_PASSWORD}
      POSTGRES_USER: ${DB_USERNAME}
      POSTGRES_DB: ${DB_DATABASE_NAME}
      PG_DATA: /var/lib/postgresql/data
    volumes:
      - pgdata:/var/lib/postgresql/data
    restart: always

  immich-proxy:
    container_name: immich_proxy
    image: ghcr.io/immich-app/immich-proxy:release
    environment:
      # Make sure these values get passed through from the env file
      - IMMICH_SERVER_URL
      - IMMICH_WEB_URL
    ports:
      - 2283:8080
    depends_on:
      - immich-server
    restart: always

volumes:
  pgdata:
  model-cache:
  tsdata:

Your .env content

###################################################################################
# Database
###################################################################################

DB_HOSTNAME=xxx
DB_USERNAME=xxx
DB_PASSWORD=xxx
DB_DATABASE_NAME=xxx

# Optional Database settings:
# DB_PORT=5432

###################################################################################
# Redis
###################################################################################

REDIS_HOSTNAME=immich_redis

# REDIS_URL will be used to pass custom options to ioredis.
# Example for Sentinel
# {"sentinels":[{"host":"redis-sentinel-node-0","port":26379},{"host":"redis-sentinel-node-1","port":26379},{"host":"redis-sentinel-node-2","port":26379}],"name":"redis-sentinel"}
# REDIS_URL=xxx

# Optional Redis settings:

# Note: these parameters are not automatically passed to the Redis Container
# to do so, please edit the docker-compose.yml file as well. Redis is not configured
# via environment variables, only redis.conf or the command line

# REDIS_PORT=6379
# REDIS_DBINDEX=0
# REDIS_USERNAME=
# REDIS_PASSWORD=
# REDIS_SOCKET=

###################################################################################
# Upload File Location
#
# This is the location where uploaded files are stored.
###################################################################################

UPLOAD_LOCATION=/mnt/Data

###################################################################################
# Typesense
###################################################################################
TYPESENSE_API_KEY=xxx
# TYPESENSE_ENABLED=false
# TYPESENSE_URL uses base64 encoding for the nodes json.
# Example JSON that was used:
# [
#      { 'host': 'typesense-1.example.net', 'port': '443', 'protocol': 'https' },
#      { 'host': 'typesense-2.example.net', 'port': '443', 'protocol': 'https' },
#      { 'host': 'typesense-3.example.net', 'port': '443', 'protocol': 'https' },
#  ]
# TYPESENSE_URL=ha://WwogICAgeyAnaG9zdCc6ICd0eXBlc2Vuc2UtMS5leGFtcGxlLm5ldCcsICdwb3J0JzogJzQ0MycsICdwcm90b2NvbCc6ICdodHRwcycgfSwKICAgIHsgJ2hvc3QnOiAndHlwZXNlbnNlLTIuZXhhbXBsZS5uZXQnLCAncG9ydCc6ICc0NDMnLCAncHJvdG9jb2wnOiAnaHR0cHMnIH0sCiAgICB7ICdob3N0JzogJ3R5cGVzZW5zZS0zLmV4YW1wbGUubmV0JywgJ3BvcnQnOiAnNDQzJywgJ3Byb3RvY29sJzogJ2h0dHBzJyB9LApd

###################################################################################
# Reverse Geocoding
#
# Reverse geocoding is done locally which has a small impact on memory usage
# This memory usage can be altered by changing the REVERSE_GEOCODING_PRECISION variable
# This ranges from 0-3 with 3 being the most precise
# 3 - Cities > 500 population: ~200MB RAM
# 2 - Cities > 1000 population: ~150MB RAM
# 1 - Cities > 5000 population: ~80MB RAM
# 0 - Cities > 15000 population: ~40MB RAM
####################################################################################

# DISABLE_REVERSE_GEOCODING=false
# REVERSE_GEOCODING_PRECISION=3

####################################################################################
# WEB - Optional
#
# Custom message on the login page, should be written in HTML form.
# For example:
# PUBLIC_LOGIN_PAGE_MESSAGE="This is a demo instance of Immich.<br><br>Email: <i>demo@demo.de</i><br>Password: <i>demo</i>"
####################################################################################

PUBLIC_LOGIN_PAGE_MESSAGE="This is my immich instance. not yours!. Go away"

####################################################################################
# Alternative Service Addresses - Optional
#
# This is an advanced feature for users who may be running their immich services on different hosts.
# It will not change which address or port that services bind to within their containers, but it will change where other services look for their peers.
# Note: immich-microservices is bound to 3002, but no references are made
####################################################################################

IMMICH_WEB_URL=http://immich-web:3000
IMMICH_SERVER_URL=http://immich-server:3001
IMMICH_MACHINE_LEARNING_URL=http://immich-machine-learning:3003

####################################################################################
# Alternative API's External Address - Optional
#
# This is an advanced feature used to control the public server endpoint returned to clients during Well-known discovery.
# You should only use this if you want mobile apps to access the immich API over a custom URL. Do not include trailing slash.
# NOTE: At this time, the web app will not be affected by this setting and will continue to use the relative path: /api
# Examples: http://localhost:3001, http://immich-api.example.com, etc
####################################################################################

#IMMICH_API_URL_EXTERNAL=http://localhost:3001

Reproduction steps

1.Let the vm run for a day or two
2.Watch the ram consumption slowly go up
3.Reboot
4.Ram usage is normal again

Additional information

Im running Immich on a LXCT container on Proxmox 8 if that matters

uhthomas commented 1 year ago

Which container uses all the memory ?

OhaDerErste commented 1 year ago

immich_machine_learning uses the most

uhthomas commented 1 year ago

Yeah, this is expected. I wonder though if there's anything we can do to reduce memory usage when it's no longer needed?

@mertalev

mertalev commented 1 year ago

Models are unloaded after idling, but the container can still end up using a lot of RAM since the backend runtimes stay allocated in memory. #2758 improves this by closing the entire process instead.

In the meantime, you can try setting MACHINE_LEARNING_EAGER_STARTUP=false. This means models are only stored in memory after a request.

OhaDerErste commented 1 year ago

can I disable machine learning alltogether?

mertalev commented 1 year ago

Yes, you can just comment out the immich-machine-learning block in your docker-compose.yml.

mertalev commented 1 year ago

And set IMMICH_MACHINE_LEARNING_URL=false in your .env.

OhaDerErste commented 1 year ago

Thanks. I kinda like the object detection and stuff but I just dont need it enough to justify the huge ressource usage