The openvino cannot be loaded properly for machine learning, and attached below is the log.
The OS that Immich Server is running on
Unraid 6.12.10
Version of Immich Server
v1.102.3
Version of Immich Mobile App
none
Platform with the issue
[X] Server
[ ] Web
[ ] Mobile
Your docker-compose.yml content
version: "3.8"
#
# WARNING: Make sure to use the docker-compose.yml of the current release:
#
# https://github.com/immich-app/immich/releases/latest/download/docker-compose.yml
#
# The compose file on main may not be compatible with the latest release.
#
name: immich
services:
immich-server:
container_name: immich_server
image: ghcr.io/immich-app/immich-server:${IMMICH_VERSION:-release}
command: [ "start.sh", "immich" ]
volumes:
- ${UPLOAD_LOCATION}:/usr/src/app/upload
- /etc/localtime:/etc/localtime:ro
env_file:
- .env
ports:
- 2283:3001
depends_on:
- redis
- database
restart: always
immich-microservices:
container_name: immich_microservices
image: ghcr.io/immich-app/immich-server:${IMMICH_VERSION:-release}
extends: # uncomment this section for hardware acceleration - see https://immich.app/docs/features/hardware-transcoding
file: hwaccel.transcoding.yml
service: quicksync # set to one of [nvenc, quicksync, rkmpp, vaapi, vaapi-wsl] for accelerated transcoding
command: [ "start.sh", "microservices" ]
volumes:
- ${UPLOAD_LOCATION}:/usr/src/app/upload
- /etc/localtime:/etc/localtime:ro
env_file:
- .env
depends_on:
- redis
- database
restart: always
immich-machine-learning:
container_name: immich_machine_learning
image: ghcr.io/immich-app/immich-machine-learning:${IMMICH_VERSION:-release}-openvino
extends: # uncomment this section for hardware acceleration - see https://immich.app/docs/features/ml-hardware-acceleration
file: hwaccel.ml.yml
service: openvino # set to one of [armnn, cuda, openvino, openvino-wsl] for accelerated inference - use the `-wsl` version for WSL2 where applicable
volumes:
- model-cache:/cache
env_file:
- .env
restart: always
redis:
container_name: immich_redis
image: redis:6.2-alpine@sha256:b6124ab2e45cc332e16398022a411d7e37181f21ff7874835e0180f56a09e82a
restart: always
labels:
- com.centurylinklabs.watchtower.enable=true
database:
container_name: immich_postgres
image: tensorchord/pgvecto-rs:pg14-v0.2.0@sha256:90724186f0a3517cf6914295b5ab410db9ce23190a2d9d0b9dd6463e3fa298f0
env_file:
- .env
environment:
POSTGRES_PASSWORD: ${DB_PASSWORD}
POSTGRES_USER: ${DB_USERNAME}
POSTGRES_DB: ${DB_DATABASE_NAME}
volumes:
- ${DB_DATA_LOCATION}:/var/lib/postgresql/data
restart: always
volumes:
model-cache:
Your .env content
# You can find documentation for all the supported env variables at https://immich.app/docs/install/environment-variables
# The location where your uploaded files are stored
UPLOAD_LOCATION=/mnt/user/pictures
# The Immich version to use. You can pin this to a specific version like "v1.71.0"
IMMICH_VERSION=release
# Connection secret for postgres. You should change it to a random password
DB_PASSWORD=postgres
# The values below this line do not need to be changed
###################################################################################
DB_HOSTNAME=immich_postgres
DB_USERNAME=postgres
DB_DATABASE_NAME=immich
DB_DATA_LOCATION=/mnt/user/appdata/immich/postgres
REDIS_HOSTNAME=immich_redis
The hwaccel.ml.yml and the hwaccel.transcoding.yml is just same as given by official.
hwaccel.ml.yml
version: "3.8"
# Configurations for hardware-accelerated machine learning
# If using Unraid or another platform that doesn't allow multiple Compose files,
# you can inline the config for a backend by copying its contents
# into the immich-machine-learning service in the docker-compose.yml file.
# See https://immich.app/docs/features/ml-hardware-acceleration for info on usage.
services:
armnn:
devices:
- /dev/mali0:/dev/mali0
volumes:
- /lib/firmware/mali_csffw.bin:/lib/firmware/mali_csffw.bin:ro # Mali firmware for your chipset (not always required depending on the driver)
- /usr/lib/libmali.so:/usr/lib/libmali.so:ro # Mali driver for your chipset (always required)
cpu: {}
cuda:
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities:
- gpu
openvino:
device_cgroup_rules:
- "c 189:* rmw"
devices:
- /dev/dri:/dev/dri
volumes:
- /dev/bus/usb:/dev/bus/usb
openvino-wsl:
devices:
- /dev/dri:/dev/dri
- /dev/dxg:/dev/dxg
volumes:
- /dev/bus/usb:/dev/bus/usb
- /usr/lib/wsl:/usr/lib/wsl
hwaccel.transcoding.ml
version: "3.8"
# Configurations for hardware-accelerated transcoding
# If using Unraid or another platform that doesn't allow multiple Compose files,
# you can inline the config for a backend by copying its contents
# into the immich-microservices service in the docker-compose.yml file.
# See https://immich.app/docs/features/hardware-transcoding for more info on using hardware transcoding.
services:
cpu: {}
nvenc:
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities:
- gpu
- compute
- video
quicksync:
devices:
- /dev/dri:/dev/dri
rkmpp:
security_opt: # enables full access to /sys and /proc, still far better than privileged: true
- systempaths=unconfined
- apparmor=unconfined
group_add:
- video
devices:
- /dev/rga:/dev/rga
- /dev/dri:/dev/dri
- /dev/dma_heap:/dev/dma_heap
- /dev/mpp_service:/dev/mpp_service
#- /dev/mali0:/dev/mali0 # only required to enable OpenCL-accelerated HDR -> SDR tonemapping
volumes:
#- /etc/OpenCL:/etc/OpenCL:ro # only required to enable OpenCL-accelerated HDR -> SDR tonemapping
#- /usr/lib/aarch64-linux-gnu/libmali.so.1:/usr/lib/aarch64-linux-gnu/libmali.so.1:ro # only required to enable OpenCL-accelerated HDR -> SDR tonemapping
vaapi:
devices:
- /dev/dri:/dev/dri
vaapi-wsl: # use this for VAAPI if you're running Immich in WSL2
devices:
- /dev/dri:/dev/dri
volumes:
- /usr/lib/wsl:/usr/lib/wsl
environment:
- LD_LIBRARY_PATH=/usr/lib/wsl/lib
- LIBVA_DRIVER_NAME=d3d12
The bug
The openvino cannot be loaded properly for machine learning, and attached below is the log.
The OS that Immich Server is running on
Unraid 6.12.10
Version of Immich Server
v1.102.3
Version of Immich Mobile App
none
Platform with the issue
Your docker-compose.yml content
Your .env content
Reproduction steps
Relevant log output
Additional information
CPU is i5 8600T
The hwaccel.ml.yml and the hwaccel.transcoding.yml is just same as given by official. hwaccel.ml.yml
hwaccel.transcoding.ml