Open imwowzer opened 6 years ago
In bidirectional WDM designs, several key systems issues should be taken into account. Care must be taken to avoid optical reflections in order to prevent multi-path interference. Some additional considerations are types and values of crosstalk, values and interdependence of power levels for both directions of transmission, OSC (Optical Supervisory Channel) transmission (if present), and automatic power shutdown or reduction.
The multiple wavelengths of a WDM-PON can be used to separate Optical Network Units (ONUs) into several virtual PONs co-existing on the same physical infrastructure. Alternatively the wavelengths can be used collectively through statistical multiplexing to provide efficient wavelength utilization and lower delays experienced by the ONUs.
There is no common standard for WDM-PON nor any unanimously agreed upon definition of the term. By some definitions WDM-PON is a dedicated wavelength for each ONU. Other more liberal definitions suggest the use of more than one wavelength in any one direction on a PON is WDM-PON. It is difficult to point to an un-biased list of WDM-PON vendors when there is no such unanimous definition. PONs provide higher bandwidth than traditional copper based access networks. WDM-PON has better privacy and better scalability because of each ONU only receives its own wavelength.
Advantages: The MAC layer is simplified because the P2P connections between OLT and ONUs are realized in wavelength domain, so no P2MP media access control is needed. In WDM-PON each wavelength can run at a different speed and protocol so there is an easy pay-as-you-grow upgrade.
Challenges: High cost of initial set-up, the cost of the WDM components. Temperature control is another challenge because of how wavelengths tend to drift with environmental temperatures.
WDM-PON的关键技术当前主要关注:无色ONU技术,即ITU-T G.989.2和CCSA WR WDM-PON标准明确可调技术实现无色ONU;另外一个是辅助管理通道(AMCC)技术,即RF Pilot-tone 和Baseband Overmodulation。
【单板类型】 | 25G光口高速通信板 【Pin数】 | 6000 【层数】 | 16层 【最高速率】 | 25Gbps 【难 点】: | 1、整板25G高速线较多,25G光口表底层不允许走高速线;2、因信号速率高,客户希望线宽尽量粗;3、成本、板厚限制,单板最多只能做16层; 【我司对策】: | 层叠规划: 说明:非常规层叠,层叠不对称,生产的时候可能会带来板弯板翘的问题,实际使用的时候,需要提前和工厂确认可行性;在设计时也需要提前考虑,走线层空余的地方,多增加地铜,保证平面的相对完整; 2、客户要求高速线线宽尽量粗,以减少线路损耗; 单板25G信号线长达到8.6inch,经与客户确认,背板那一段线长也达到8inch,整个通道线长约16.6 inch; 经SI仿真评估,选用M6板材,并使用HVLP铜箔,高速线线宽设计5mil,总长度在18 inch以内可满足信号要求; 3、对高速的焊盘、过孔进行优化,提升阻抗;通过背钻设计,减小STUB长度;
为满足25G信号要求,传输线损耗须低至0.7dB/inch(12.5GHz)。因此,改性FR4材料(如FRN4000等)已无法满足要求,更不用说普通FR4材料,能否寻找到一款或几款电性能优越的材料将成为成功的关键。面对目前市场上品种繁多的高速材料,我们需要快速筛选出电性能优越、可加工性能好的高速板材,为此PCB制版厂正加快对M6及同类材料的加工性能、材料可靠性进行研究。 低速时我们可以不考虑铜箔粗糙度和玻纤效应对信号质量的影响,25G时该影响不可忽略,而行业内对这方面的研究较少,其影响也尚不明确。针对该问题,PCB板厂与CAD高速实验室专门对铜箔粗糙度、玻纤效应对信号的影响进行了研究。 除材料方面的问题外,针对25G技术,PCB制作工艺方面还需要进行以下几个方面的能力提升:
- 高厚径比孔制作能力。25G背板层数高、厚度大、金属化孔的厚径比高,这需要在深镀能力、钻孔能力尚进行提升,经过PCB板厂这两年的努力,样板深镀能力已达到30:1,利用对钻技术,实现了4.8mm板厚,0.15mm微孔钻孔。
- stub控制能力。对于25G背板,要求各背钻深度下stub长度控制在10mil(甚至8mil)内。经过技术中心的努力,背钻深度2mm及以下时,PCB板厂已具有将stub长度控制在10mil以内能力,但25G背板背钻深度多在2mm以上。为此,技术中心2017年在现有基础上,通过对CCD钻机进行改造,将各种背钻深度下的stub长度控制在8mil内,目前该技术已申请专利。
WDM-PON OLT设备统一光接入平台用于5G移动前传的同时,支持有线光接入业务。5G DU或BBU池与RRU之间通过WDM-PON无源光网络连接,实现移动业务前传。
目前WDM-PON标准主要研究了单波长10G速率以下(1.25G/2.5G/10G)的WDM-PON系统。单波速率达10G时,WDM-PON无色ONU的主流技术是可调技术。标准组织开始关注WDM-PON在5G前传的应用,特别是单波25G速率的WDM-PON系统。ITU-T G.sup.5GP 讨论组正在推进和讨论25G WDM-PON。 2017年以来的国际运营商把WDM-PON作为5G前传的重点方案进行研究。法电Orange,现网大多是D-RAN, C-RAN不多,5G C-RAN,考虑将CU放在NG-POP点,5G前传密切关注和研究WDM-PON。德电DT,考虑C-RAN, CU/DU分离,CU集中于汇聚层。WDM-PON前传感兴趣。澳电Telstra ,针对C-RAN 前传,比较有源DWDM和WDM-PON方案。国内三大运营商,中国电信研究院积极推动WDM-PON的测试和试商用;中国联通对5G承载主推G.metro,WDM-PON技术上与之相似,可作为简化版G.metro;中国移动对5G承载主推FlexE,WDM-PON可与之融合。
O-band “Original” O-band, 1260 nm to 1360 nm The lower limit is determined by the cable cut-off wavelength, which is 1260 nm. The upper limit 1360 nm is determined by the rising edge of the “water” attenuation band peaked at 1383 nm, so 1360 nm was chosen as the upper limit.
E-band “Extended” E-band, 1360 nm to 1460 nm Fibers with a low water attenuation peak allows the utilization of the band above 1360. The effects of a small water peak are negligible at wavelengths beyond about 1460 nm.
C-band “Conventional” C-band, 1530 nm to 1565 nm Initially, erbium-doped fiber amplifiers (EDFAs) had useful gain bands beginning at about 1530 nm and ending at about 1565 nm. This gain band had become known as the “C-band”.
S-band “Short wavelength” S-band, 1460 nm to 1530 nm The lower limit of this band is taken to be the upper limit of the E-band. The upper limit is taken to be the lower limit of the C-band. EDFAs have become available with relatively flatter and wider gains and application of EDFAs to this band is possible at least in a part of the band. Some wavelengths of this band may also be utilized for pumping of optical fiber amplifiers, both of the active-ion type and the Raman type.
L-band “Long wavelength” L-band, 1565 nm to 1625 nm For the longest wavelengths above the C-band, fiber cable performance over a range of temperatures is adequate up to 1625 nm for current fiber types.
U-band “Ultra-long wavelength” U-band, 1625 nm to 1675 nm In some cases it is desirable to perform a number of maintenance functions (preventive, after installation, before service and post-fault) on fiber cables in the outside plant. These involve surveillance, testing, and control activities utilizing optical time domain reflectometer (OTDR) testing, fiber identification, loss testing, and power monitoring. A wavelength region, that is intended to be never occupied by transmission channels, may be attractive for maintenance, even if enhanced loss occurs. The U-band has been defined exclusively for possible maintenance purposes. Transmission of traffic-bearing signals is not currently foreseen in this band. The use for non-transmission purposes must be done on a basis of causing negligible interference to transmission signals in other bands. Sufficiently low fiber loss is not ensured in this band.
WP技术介绍
1. WP何时提出
2. WP发展过程
3. WP遇到的瓶颈
4. WP当前进展
5. WP测试数据