Open Nan2018 opened 5 years ago
Platform and device info:
================
Platform # 1
================
Platform name : NVIDIA CUDA
OpenCL version : OpenCL 1.2 CUDA 10.2.120
Platform vendor : NVIDIA Corporation
OpenCL profile : FULL_PROFILE
Extensions :
: cl_khr_global_int32_base_atomics
: cl_khr_global_int32_extended_atomics
: cl_khr_local_int32_base_atomics
: cl_khr_local_int32_extended_atomics
: cl_khr_fp64
: cl_khr_byte_addressable_store
: cl_khr_icd
: cl_khr_gl_sharing
: cl_nv_compiler_options
: cl_nv_device_attribute_query
: cl_nv_pragma_unroll
: cl_nv_d3d10_sharing
: cl_khr_d3d10_sharing
: cl_nv_d3d11_sharing
: cl_nv_copy_opts
: cl_nv_create_buffer
:
Device(s) : 1
----------------
Device # 1
----------------
Device name : GeForce GTX 1080 Ti
OpenCL device type : GPU
Vendor name : NVIDIA Corporation
OpenCL version : OpenCL 1.2 CUDA
Device vendor identifier : 4318
OpenCL software driver version : 430.86
Maximum number of samplers : 32
Maximum number of work-items in a work-group : 1024
Maximum dimensions that specify work-item IDs : 3
Maximum number of work-items in each dimension : 1024, 1024, 64
Address space size : 32
Type of local memory : Local memory storage
Size of local memory arena (in bytes) : 49152
Type of global memory cache : Read-Write cache
Size of global memory cache (in bytes) : 458752
Size of global memory cache line (in bytes) : 128
Size of global device memory (in bytes) : 11811160064
Device is available : Yes
Compiler is available : Yes
Little endian device : Yes
Error correction support : No
Images are supported : Yes
Max width of 2D image (in pixels) : 16384
Max height of 2D image (in pixels) : 32768
Max width of 3D image (in pixels) : 16384
Max height of 3D image (in pixels) : 16384
Max depth of 3D image (in pixels) : 16384
Resolution of device timer (in nanoseconds) : 1000
Maximum configured clock frequency (in MHz) : 1582
The number of parallel compute cores : 28
Max number of __constant arguments in a kernel : 9
Max size of a constant buffer allocation (in bytes) : 65536
Max size of memory object allocation (in bytes) : 2952790016
Max size of kernel arguments (in bytes) : 4352
Max number of simultaneously read image objects : 256
Max number of simultaneously written image objects : 16
Alignment of the base address (in bits) : 4096
Minimum alignment for any data type (in bytes) : 128
Preferred native vector width size for char type : 1
Preferred native vector width size for short type : 1
Preferred native vector width size for int type : 1
Preferred native vector width size for long type : 1
Preferred native vector width size for float type : 1
Preferred native vector width size for double type : 1
Single precision floating-point capability :
: denorms are supported
: INF and NaNs are supported
: round to nearest even rounding mode supported
: round to zero rounding mode supported
: round to +ve and -ve infinity rounding modes supported
: IEEE754-2008 fused multiply-add is supported
Double precision fp capability :
: denorms are supported
: INF and NaNs are supported
: round to nearest even rounding mode supported
: round to zero rounding mode supported
: round to +ve and -ve infinity rounding modes supported
: IEEE754-2008 fused multiply-add is supported
Half precision fp capability :
: round to nearest even rounding mode supported
: round to zero rounding mode supported
Execution capabilities :
: The OpenCL device can execute OpenCL kernels
Supported command-queue properties : Commands are executed out-of-order;The profiling of commands is enabled
Extensions :
: cl_khr_global_int32_base_atomics
: cl_khr_global_int32_extended_atomics
: cl_khr_local_int32_base_atomics
: cl_khr_local_int32_extended_atomics
: cl_khr_fp64
: cl_khr_byte_addressable_store
: cl_khr_icd
: cl_khr_gl_sharing
: cl_nv_compiler_options
: cl_nv_device_attribute_query
: cl_nv_pragma_unroll
: cl_nv_d3d10_sharing
: cl_khr_d3d10_sharing
: cl_nv_d3d11_sharing
: cl_nv_copy_opts
: cl_nv_create_buffer
According to NVIDA CUDA download page, CUDA 10 is the latest version.
~~Hello, my GPU is integrated graphics, intel HD 515 My CPU is Intel(R) Core(TM) m3-6Y30 CPU @ 0.90GHz~~
I am using clinfo, the output is
Platform Name Intel(R) OpenCL Number of devices 2 Device Name Intel(R) Gen9 HD Graphics NEO Device Vendor Intel(R) Corporation Device Vendor ID 0x8086 Device Version OpenCL 2.1 NEO Driver Version 18.28.11080 Device OpenCL C Version OpenCL C 2.0 Device Type GPU Device Profile FULL_PROFILE Max compute units 24 Max clock frequency 850MHz Device Partition (core) Max number of sub-devices 0 Supported partition types None Max work item dimensions 3 Max work item sizes 256x256x256
~~But when I print the device with pyopencl, I get the following result <pyopencl.Device 'Intel(R) Core(TM) m3-6Y30 CPU @ 0.90GHz' on 'Intel(R) CPU Runtime for OpenCL(TM) Applications' at 0x1a4b0c8> image support: 1~~
only CPU
I want to know how to select GPU in pyopencl thanks
It seems sometimes image is not correctly initialized on NVIDA GPU on windows.
Output:
However, if I choose Intel platform and CPU as device, the output is correct:
OS: windows10
I tested with AMD GPU on Mac and the output is correct