# ADSL example
library(random.cdisc.data)
library(teal.modules.general)
ADSL <- radsl(cached = TRUE)
for (i in seq.int(0, 100)) {
name <- paste0("col_", as.character(i))
set.seed(i)
ADSL[[name]] <- runif(400)
}
var_names <- lapply(seq.int(0, 100), function(x) { paste0("col_", as.character(x)) })
app <- teal::init(
data = cdisc_data(cdisc_dataset("ADSL", ADSL),
code = "ADSL <- radsl(cached = TRUE)
for (i in seq.int(0, 100)) {
name <- paste0('col_', as.character(i))
set.seed(i)
ADSL[[name]] <- runif(400)
}", check = TRUE),
modules = root_modules(
tm_a_pca("PCA",
data_extract_spec(
dataname = "ADSL",
select = select_spec(
choices = variable_choices(data = ADSL),
selected = unlist(var_names),
multiple = TRUE
),
filter = NULL
)
)
)
)
shinyApp(app$ui, app$server)
So what happens is this:
user/3166/files/e70d0d80-0d4c-11eb-87d5-751e3a439861)
When the number of variables increases, this gets worse to the point of being
user/3166/files/7b777000-0d4d-11eb-81bd-a49fcd84431a). I don't know if there is a point in performing PCA on more than 20 variables in the context of the analysis we aim to service, so I guess it might be a non-issue.
Provenance:
```
Creator: kpagacz
```
Environment: NEST_UAT_10_12
Sample code:
So what happens is this: