Open iaugusty opened 6 days ago
1 files 84 suites 1m 39s ⏱️ 870 tests 867 ✅ 3 💤 0 ❌ 2 322 runs 2 294 ✅ 28 💤 0 ❌
Results for commit 648d5b68.
:recycle: This comment has been updated with latest results.
Test Suite | $Status$ | Time on main |
$±Time$ | $±Tests$ | $±Skipped$ | $±Failures$ | $±Errors$ |
---|---|---|---|---|---|---|---|
analyze_vars_in_cols | 💔 | $2.40$ | $+3.48$ | $+17$ | $-7$ | $0$ | $0$ |
count_occurrences | 💔 | $0.74$ | $+1.66$ | $+10$ | $-8$ | $0$ | $0$ |
count_occurrences_by_grade | 💔 | $1.76$ | $+1.11$ | $+16$ | $-17$ | $0$ | $0$ |
summarize_coxreg | 💔 | $3.81$ | $+1.55$ | $+13$ | $-13$ | $0$ | $0$ |
summarize_num_patients | 💔 | $1.11$ | $+1.28$ | $+18$ | $-16$ | $0$ | $0$ |
Results for commit 9ebc3bc35323f27c6d9846af1ee088a9c77805a0
♻️ This comment has been updated with latest results.
Filename Stmts Miss Cover Missing
------------------------------------------ ------- ------ ------- ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
R/abnormal_by_baseline.R 65 0 100.00%
R/abnormal_by_marked.R 55 5 90.91% 93-97
R/abnormal_by_worst_grade_worsen.R 116 3 97.41% 263-265
R/abnormal_by_worst_grade.R 60 0 100.00%
R/abnormal.R 43 0 100.00%
R/analyze_variables.R 189 11 94.18% 544, 561-576, 765
R/analyze_vars_in_cols.R 176 13 92.61% 178, 221, 235-236, 244-252
R/bland_altman.R 92 1 98.91% 46
R/combination_function.R 9 0 100.00%
R/compare_variables.R 84 2 97.62% 257, 316
R/control_incidence_rate.R 10 0 100.00%
R/control_logistic.R 7 0 100.00%
R/control_step.R 23 1 95.65% 58
R/control_survival.R 15 0 100.00%
R/count_cumulative.R 59 1 98.31% 74
R/count_missed_doses.R 36 0 100.00%
R/count_occurrences_by_grade.R 157 2 98.73% 177, 271
R/count_occurrences.R 116 1 99.14% 120
R/count_patients_events_in_cols.R 67 1 98.51% 60
R/count_patients_with_event.R 62 1 98.39% 123
R/count_patients_with_flags.R 95 1 98.95% 134
R/count_values.R 27 0 100.00%
R/cox_regression_inter.R 154 0 100.00%
R/cox_regression.R 161 0 100.00%
R/coxph.R 167 7 95.81% 191-195, 238, 253, 261, 267-268
R/d_pkparam.R 406 0 100.00%
R/decorate_grob.R 113 0 100.00%
R/desctools_binom_diff.R 621 64 89.69% 53, 88-89, 125-126, 129, 199, 223-232, 264, 266, 286, 290, 294, 298, 353, 356, 359, 362, 422, 430, 439, 444-447, 454, 457, 466, 469, 516-517, 519-520, 522-523, 525-526, 593, 604-616, 620, 663, 676, 680
R/df_explicit_na.R 30 0 100.00%
R/estimate_multinomial_rsp.R 50 1 98.00% 65
R/estimate_proportion.R 205 11 94.63% 83-90, 94, 99, 320, 486
R/fit_rsp_step.R 36 0 100.00%
R/fit_survival_step.R 36 0 100.00%
R/formatting_functions.R 227 46 79.74% 141, 269-325, 360
R/g_forest.R 585 60 89.74% 240, 252-255, 260-261, 275, 277, 287-290, 335-338, 345, 414, 501, 514, 518-519, 524-525, 538, 554, 601, 632, 707, 716, 722, 741, 796-816, 819, 830, 849, 904, 907, 1042-1047
R/g_ipp.R 133 0 100.00%
R/g_km.R 350 57 83.71% 285-288, 307-309, 363-366, 400, 428, 432-475, 482-486
R/g_lineplot.R 260 22 91.54% 204, 378-385, 424-434, 543, 551
R/g_step.R 68 1 98.53% 108
R/g_waterfall.R 47 0 100.00%
R/h_adsl_adlb_merge_using_worst_flag.R 73 0 100.00%
R/h_biomarkers_subgroups.R 46 0 100.00%
R/h_cox_regression.R 110 0 100.00%
R/h_incidence_rate.R 45 0 100.00%
R/h_km.R 509 41 91.94% 137, 189-194, 287, 378, 380-381, 392-394, 413, 420-421, 423-425, 433-435, 460, 465-468, 651-654, 1108-1119
R/h_logistic_regression.R 468 3 99.36% 203-204, 273
R/h_map_for_count_abnormal.R 54 0 100.00%
R/h_pkparam_sort.R 15 0 100.00%
R/h_response_biomarkers_subgroups.R 90 12 86.67% 50-55, 107-112
R/h_response_subgroups.R 178 18 89.89% 257-270, 329-334
R/h_stack_by_baskets.R 64 1 98.44% 89
R/h_step.R 180 0 100.00%
R/h_survival_biomarkers_subgroups.R 88 6 93.18% 111-116
R/h_survival_duration_subgroups.R 207 18 91.30% 259-271, 336-341
R/imputation_rule.R 17 0 100.00%
R/incidence_rate.R 86 7 91.86% 67-72, 152
R/logistic_regression.R 102 0 100.00%
R/missing_data.R 21 3 85.71% 32, 66, 76
R/odds_ratio.R 117 0 100.00%
R/prop_diff_test.R 91 0 100.00%
R/prop_diff.R 265 15 94.34% 70-73, 105, 290-297, 440, 605
R/prune_occurrences.R 57 0 100.00%
R/response_biomarkers_subgroups.R 69 6 91.30% 196-201
R/response_subgroups.R 213 8 96.24% 100-105, 260-261
R/riskdiff.R 65 5 92.31% 102-105, 114
R/rtables_access.R 38 0 100.00%
R/score_occurrences.R 20 1 95.00% 124
R/split_cols_by_groups.R 49 0 100.00%
R/stat.R 59 0 100.00%
R/summarize_ancova.R 106 2 98.11% 183, 188
R/summarize_change.R 74 1 98.65% 184
R/summarize_colvars.R 10 0 100.00%
R/summarize_coxreg.R 172 0 100.00%
R/summarize_glm_count.R 209 3 98.56% 193-194, 490
R/summarize_num_patients.R 93 4 95.70% 117-119, 266
R/summarize_patients_exposure_in_cols.R 96 1 98.96% 56
R/survival_biomarkers_subgroups.R 78 6 92.31% 117-122
R/survival_coxph_pairwise.R 84 12 85.71% 51-52, 64-73
R/survival_duration_subgroups.R 211 6 97.16% 124-129
R/survival_time.R 111 0 100.00%
R/survival_timepoint.R 124 10 91.94% 131-140
R/utils_checkmate.R 68 0 100.00%
R/utils_default_stats_formats_labels.R 156 0 100.00%
R/utils_factor.R 109 2 98.17% 84, 302
R/utils_ggplot.R 110 0 100.00%
R/utils_grid.R 126 5 96.03% 164, 279-286
R/utils_rtables.R 124 9 92.74% 39, 46, 403-404, 526-530
R/utils_split_funs.R 52 2 96.15% 82, 94
R/utils.R 141 7 95.04% 118, 121, 124, 128, 137-138, 332
R/xutils_custom_stats_formats_varying_dp.R 102 102 0.00% 140-395
TOTAL 10964 628 94.27%
Filename Stmts Miss Cover
------------------------------------------ ------- ------ --------
R/analyze_variables.R +14 +9 -4.68%
R/formatting_functions.R +44 +44 -19.17%
R/utils_default_stats_formats_labels.R -1 0 +100.00%
R/xutils_custom_stats_formats_varying_dp.R +102 +102 +100.00%
TOTAL +159 +155 -1.35%
Results for commit: 648d5b688c77807d7ae853a973a80a4586797b9d
Minimum allowed coverage is 80%
:recycle: This comment has been updated with latest results
@iaugusty which issue is this PR addressing?
@iaugusty which issue is this PR addressing?
issue #1324:
Pull Request
This is a draft proposal on how to use customized formats with varying decimal precision. Any feedback is more than welcome.
For now, only analyze_vars is using this approach, whereas I'd like to at least handle ancova analysis results in a similar way.