intel-analytics / ipex-llm

Accelerate local LLM inference and finetuning (LLaMA, Mistral, ChatGLM, Qwen, Mixtral, Gemma, Phi, MiniCPM, Qwen-VL, MiniCPM-V, etc.) on Intel XPU (e.g., local PC with iGPU and NPU, discrete GPU such as Arc, Flex and Max); seamlessly integrate with llama.cpp, Ollama, HuggingFace, LangChain, LlamaIndex, vLLM, GraphRAG, DeepSpeed, Axolotl, etc
Apache License 2.0
6.69k stars 1.26k forks source link

(PI_ERROR_BUILD_PROGRAM_FAILURE)Exception caught at file:C:/Users/Administrator/actions-runner/release-cpp-oneapi_2024_2/_work/llm.cpp/llm.cpp/llama-cpp-bigdl/ggml/src/ggml-sycl.cpp, line:3715 #12108

Open aalinkil opened 1 month ago

aalinkil commented 1 month ago

Hi, I am having an issue with running the sample example in the quickstart guide. This is the error I'm seeing:

(llm-cpp) C:\Users\ashwin-a\llama-cpp>llama-cli -m mistral-7b-instruct-v0.1.Q4_K_M.gguf -n 32 --prompt "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun" -c 1024 -t 8 -e -ngl 99 --color
Log start
main: build = 1 (1810c22)
main: built with MSVC 19.38.33130.0 for
main: seed  = 1726854813
llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from mistral-7b-instruct-v0.1.Q4_K_M.gguf (version GGUF V2)
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = mistralai_mistral-7b-instruct-v0.1
llama_model_loader: - kv   2:                       llama.context_length u32              = 32768
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   4:                          llama.block_count u32              = 32
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 14336
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                       llama.rope.freq_base f32              = 10000.000000
llama_model_loader: - kv  11:                          general.file_type u32              = 15
llama_model_loader: - kv  12:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  16:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  17:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  18:            tokenizer.ggml.unknown_token_id u32              = 0
llama_model_loader: - kv  19:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q4_K:  193 tensors
llama_model_loader: - type q6_K:   33 tensors
llm_load_vocab: special tokens cache size = 3
llm_load_vocab: token to piece cache size = 0.1637 MB
llm_load_print_meta: format           = GGUF V2
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 32768
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 4
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 14336
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 32768
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = 7B
llm_load_print_meta: model ftype      = Q4_K - Medium
llm_load_print_meta: model params     = 7.24 B
llm_load_print_meta: model size       = 4.07 GiB (4.83 BPW)
llm_load_print_meta: general.name     = mistralai_mistral-7b-instruct-v0.1
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: LF token         = 13 '<0x0A>'
llm_load_print_meta: max token length = 48
ggml_sycl_init: GGML_SYCL_FORCE_MMQ:   no
ggml_sycl_init: SYCL_USE_XMX: yes
ggml_sycl_init: found 1 SYCL devices:
get_memory_info: [warning] ext_intel_free_memory is not supported (export/set ZES_ENABLE_SYSMAN=1 to support), use total memory as free memory
llm_load_tensors: ggml ctx size =    0.27 MiB
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 33/33 layers to GPU
llm_load_tensors:      SYCL0 buffer size =  4095.05 MiB
llm_load_tensors:        CPU buffer size =    70.31 MiB
..............................................................................................
llama_new_context_with_model: n_ctx      = 1024
llama_new_context_with_model: n_batch    = 1024
llama_new_context_with_model: n_ubatch   = 1024
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
[SYCL] call ggml_check_sycl
ggml_check_sycl: GGML_SYCL_DEBUG: 0
ggml_check_sycl: GGML_SYCL_F16: no
found 1 SYCL devices:
|  |                   |                                       |       |Max    |        |Max  |Global |
    |
|  |                   |                                       |       |compute|Max work|sub  |mem    |
    |
|ID|        Device Type|                                   Name|Version|units  |group   |group|size   |       Driver version|
|--|-------------------|---------------------------------------|-------|-------|--------|-----|-------|---------------------|
| 0| [level_zero:gpu:0]|                 Intel Iris Xe Graphics|    1.3|     96|     512|   32| 15516M|            1.3.29516|
llama_kv_cache_init:      SYCL0 KV buffer size =   128.00 MiB
llama_new_context_with_model: KV self size  =  128.00 MiB, K (f16):   64.00 MiB, V (f16):   64.00 MiB
llama_new_context_with_model:  SYCL_Host  output buffer size =     0.12 MiB
llama_new_context_with_model:      SYCL0 compute buffer size =   164.01 MiB
llama_new_context_with_model:  SYCL_Host compute buffer size =    20.01 MiB
llama_new_context_with_model: graph nodes  = 902
llama_new_context_with_model: graph splits = 2
The program was built for 1 devices
Build program log for 'Intel(R) Iris(R) Xe Graphics':
 -11 (PI_ERROR_BUILD_PROGRAM_FAILURE)Exception caught at file:C:/Users/Administrator/actions-runner/release-cpp-oneapi_2024_2/_work/llm.cpp/llm.cpp/llama-cpp-bigdl/ggml/src/ggml-sycl.cpp, line:3715

I'm trying to run this on Intel Iris Xe Graphics with about 15.8GB of VRAM. GPU Driver version is 31.0.101.5590. Let me know if any additional information is required. I am not sure what the root cause of this issue is.

aalinkil commented 1 month ago

I continued by running the init-ollama.bat and tried running ollama with the intel iGPU. After that failed I tried running the same sample example in the quickstart guide but now I am getting a different error:

(llm-cpp) C:\Users\ashwin-a\llama-cpp>llama-cli -m mistral-7b-instruct-v0.1.Q4_K_M.gguf -n 32 --prompt "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun" -c 1024 -t 8 -e -ngl 99 --color
Log start
main: build = 1 (1810c22)
main: built with MSVC 19.38.33130.0 for
main: seed  = 1726857826
llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from mistral-7b-instruct-v0.1.Q4_K_M.gguf (version GGUF V2)
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = mistralai_mistral-7b-instruct-v0.1
llama_model_loader: - kv   2:                       llama.context_length u32              = 32768
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   4:                          llama.block_count u32              = 32
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 14336
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                       llama.rope.freq_base f32              = 10000.000000
llama_model_loader: - kv  11:                          general.file_type u32              = 15
llama_model_loader: - kv  12:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr[str,32000]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr[f32,32000]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr[i32,32000]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  16:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  17:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  18:            tokenizer.ggml.unknown_token_id u32              = 0
llama_model_loader: - kv  19:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q4_K:  193 tensors
llama_model_loader: - type q6_K:   33 tensors
llm_load_vocab: special tokens cache size = 3
llm_load_vocab: token to piece cache size = 0.1637 MB
llm_load_print_meta: format           = GGUF V2
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 32768
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 4
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 14336
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 32768
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = 7B
llm_load_print_meta: model ftype      = Q4_K - Medium
llm_load_print_meta: model params     = 7.24 B
llm_load_print_meta: model size       = 4.07 GiB (4.83 BPW)
llm_load_print_meta: general.name     = mistralai_mistral-7b-instruct-v0.1
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: LF token         = 13 '<0x0A>'
llm_load_print_meta: max token length = 48
ggml_sycl_init: GGML_SYCL_FORCE_MMQ:   no
ggml_sycl_init: SYCL_USE_XMX: yes
ggml_sycl_init: found 1 SYCL devices:
get_memory_info: [warning] ext_intel_free_memory is not supported (export/set ZES_ENABLE_SYSMAN=1 to support), use total memory as free memory
llm_load_tensors: ggml ctx size =    0.27 MiB
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 33/33 layers to GPU
llm_load_tensors:      SYCL0 buffer size =  4095.05 MiB
llm_load_tensors:        CPU buffer size =    70.31 MiB
..............................................................................................
llama_new_context_with_model: n_ctx      = 1024
llama_new_context_with_model: n_batch    = 1024
llama_new_context_with_model: n_ubatch   = 1024
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
[SYCL] call ggml_check_sycl
ggml_check_sycl: GGML_SYCL_DEBUG: 0
ggml_check_sycl: GGML_SYCL_F16: no
found 1 SYCL devices:
|  |                   |                                       |       |Max    |        |Max  |Global |                     |
|  |                   |                                       |       |compute|Max work|sub  |mem    |                     |
|ID|        Device Type|                                   Name|Version|units  |group   |group|size   |       Driver version|
|--|-------------------|---------------------------------------|-------|-------|--------|-----|-------|---------------------|
| 0| [level_zero:gpu:0]|                 Intel Iris Xe Graphics|    1.3|     96|     512|   32| 15516M|            1.3.29516|
llama_kv_cache_init:      SYCL0 KV buffer size =   128.00 MiB
llama_new_context_with_model: KV self size  =  128.00 MiB, K (f16):   64.00 MiB, V (f16):   64.00 MiB
llama_new_context_with_model:  SYCL_Host  output buffer size =     0.12 MiB
llama_new_context_with_model:      SYCL0 compute buffer size =   164.01 MiB
llama_new_context_with_model:  SYCL_Host compute buffer size =    20.01 MiB
llama_new_context_with_model: graph nodes  = 902
llama_new_context_with_model: graph splits = 2
LLVM ERROR: Diag: aborted
JinheTang commented 1 month ago

Hi @aalinkil, we will try to reproduce the issue first and let you know if there's any progress.

JinheTang commented 1 month ago

Hi @aalinkil , the latest version of ipex-llm seems to have this problem on Intel(R) Iris(R) Xe Graphics. you can downgrade it to the currently working version 2.2.0b20240911. To avoid conflict, create a new conda environment and install the specified version:

conda create -n llm-cpp-0911 python=3.11
conda activate llm-cpp-0911
pip install ipex-llm[cpp]==2.2.0b20240911

Thank you for pointing it out.

aalinkil commented 1 month ago

Thanks, that worked!