intel-analytics / ipex-llm

Accelerate local LLM inference and finetuning (LLaMA, Mistral, ChatGLM, Qwen, Mixtral, Gemma, Phi, MiniCPM, Qwen-VL, MiniCPM-V, etc.) on Intel XPU (e.g., local PC with iGPU and NPU, discrete GPU such as Arc, Flex and Max); seamlessly integrate with llama.cpp, Ollama, HuggingFace, LangChain, LlamaIndex, vLLM, GraphRAG, DeepSpeed, Axolotl, etc
Apache License 2.0
6.76k stars 1.27k forks source link

Inference is exceptionally slow on the L20 GPU #12440

Open joey9503 opened 4 days ago

joey9503 commented 4 days ago
截屏2024-11-25 15 35 43

speed is 0.08tokens/sec and the gpu usage is extremely low:

截屏2024-11-25 14 24 49

system info: gpu: L20 cuda: 12.2 pytorch: 2.5.1 graphics card driver version: 535.161.08 vllm version: 0.6.4.post1

inference script:


from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

# Initialize the tokenizer
tokenizer = AutoTokenizer.from_pretrained("../Qwen2-Math-7B-Instruct")

# Pass the default decoding hyperparameters of Qwen2.5-7B-Instruct
# max_tokens is for the maximum length for generation.
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, repetition_penalty=1.05, max_tokens=512)

# Input the model name or path. Can be GPTQ or AWQ models.
llm = LLM(model="../Qwen2-Math-7B-Instruct", enforce_eager=True)

# Prepare your prompts
prompt = "Tell me something about large language models."
messages = [
    {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

# generate outputs
outputs = llm.generate([text], sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
qiuxin2012 commented 4 days ago

Thanks for your question. We don't support nvidia GPUs.