Advanced Quantization Algorithm for LLMs. This is official implementation of "Optimize Weight Rounding via Signed Gradient Descent for the Quantization of LLMs"
File "/home/wenhuach/anaconda3/envs/autoround/lib/python3.10/site-packages/triton/runtime/jit.py", line 167, in
return lambda *args, *kwargs: self.run(grid=grid, warmup=False, args, kwargs)
File "/home/wenhuach/auto-round/auto_round_extension/cuda/triton_utils/custom_autotune.py", line 131, in run
key = tuple([2 int(math.log2(x) + 0.5) for x in key])
File "/home/wenhuach/auto-round/auto_round_extension/cuda/triton_utils/custom_autotune.py", line 131, in
key = tuple([2 ** int(math.log2(x) + 0.5) for x in key])
ValueError: math domain error
File "/home/wenhuach/anaconda3/envs/autoround/lib/python3.10/site-packages/triton/runtime/jit.py", line 167, in
return lambda *args, *kwargs: self.run(grid=grid, warmup=False, args, kwargs)
File "/home/wenhuach/auto-round/auto_round_extension/cuda/triton_utils/custom_autotune.py", line 131, in run
key = tuple([2 int(math.log2(x) + 0.5) for x in key])
File "/home/wenhuach/auto-round/auto_round_extension/cuda/triton_utils/custom_autotune.py", line 131, in
key = tuple([2 ** int(math.log2(x) + 0.5) for x in key])
ValueError: math domain error