Open Serizao opened 1 year ago
A have a A770 16GB graphical card. I try to run finunning for a model . This is python code :
import csv import intel_extension_for_pytorch as ipex import torch from random import randint from tqdm import tqdm from itertools import islice, zip_longest from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq from transformers import Trainer, TrainingArguments import warnings warnings.filterwarnings("ignore", category=UserWarning, module="intel_extension_for_pytorch") warnings.filterwarnings("ignore", category=UserWarning, module="torchvision.io.image", lineno=13) torch.xpu.empty_cache() DEVICE = torch.device("xpu" if torch.xpu.is_available() else "cpu") print(f"Finetuning on device: {ipex.xpu.get_device_name()}") def get_device(self): if torch.xpu.is_available(): return DEVICE else: return self.device def place_model_on_device(self): self.model.to(self.args.device) deviceCompute = torch.device("xpu" if torch.xpu.is_available() else "cpu") print(f"Using device: {deviceCompute}") model_name = "facebook/nllb-200-distilled-600M" #model_name ="Helsinki-NLP/opus-mt-tc-big-fr-en" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) model.to(deviceCompute) dataset = load_dataset("json", data_files="dataset-3/unit/data.json") dataset = dataset["train"].shuffle(seed=42) dataset = dataset.shard(num_shards=10, index=0) #TrainingArguments.device = property(get_device, TrainingArguments.device.setter) def preprocess_function(examples): padding = "max_length" inputs = [ex for ex in examples["fr"]] targets = [ex for ex in examples["en"]] model_inputs = tokenizer(inputs, padding=padding, truncation=True) labels = tokenizer(targets, padding=padding, truncation=True) model_inputs["labels"] = labels["input_ids"] return model_inputs train_dataset = dataset.map(preprocess_function, batched=True, desc="Running tokenizer") data_collator = DataCollatorForSeq2Seq( tokenizer, model=model, label_pad_token_id=tokenizer.pad_token_id, pad_to_multiple_of=64 ) # Paramètres d'entraînement avec PyTorch training_args = TrainingArguments( gradient_accumulation_steps=2, output_dir="./results", per_device_train_batch_size=4, num_train_epochs=3, logging_dir="./logs", logging_steps=100, save_steps=500, bf16=True, # setting datype to bfloat16 save_total_limit=2, # Conservez seulement les 2 derniers checkpoints push_to_hub=False, # Si vous souhaitez sauvegarder le modèle sur Hugging Face Hub## use_xpu=True, # let Trainer use available XPU device (intel GPU namespace) xpu_backend="mpi", use_ipex=True, # optimize the model and optimizer using intel extension for pyotrch (optional) ) trainer = Trainer( model=model, args=training_args, data_collator=data_collator, train_dataset=train_dataset, ) # Entraînez le modèle trainer.train() save_directory = "./dataset-3/models/new-finetune-fb-nllb-600M" model.save_pretrained(save_directory) tokenizer.save_pretrained(save_directory)
i have this error:
To test i try with extrem lower value for max_length (tokenizer) but it seem be the same result. So maybe there's a memory error.
CPU: Architecture : x86_64 Mode(s) opératoire(s) des processeurs : 32-bit, 64-bit Address sizes: 42 bits physical, 48 bits virtual Boutisme : Little Endian Processeur(s) : 20 Liste de processeur(s) en ligne : 0-19 Identifiant constructeur : GenuineIntel BIOS Vendor ID: Intel(R) Corporation Nom de modèle : 12th Gen Intel(R) Core(TM) i7-12700 BIOS Model name: 12th Gen Intel(R) Core(TM) i7-12700 To Be Filled By O.E.M. CPU @ 4.4GHz BIOS CPU family: 198 Famille de processeur : 6 Modèle : 151 Thread(s) par cœur : 2 Cœur(s) par socket : 12 Socket(s) : 1 Révision : 2 CPU(s) scaling MHz: 48% Vitesse maximale du processeur en MHz : 4900,0000 Vitesse minimale du processeur en MHz : 800,0000 BogoMIPS : 4224,00 Drapaux : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi umip pku ospke waitpkg gfni vaes vpclmulqdq tme rdpid movdiri movdir64b fsrm md_clear serialize pconfig arch_lbr ibt flush_l1d arch_capabilities Virtualisation : VT-x Cache L1d : 512 KiB (12 instances) Cache L1i : 512 KiB (12 instances) Cache L2 : 12 MiB (9 instances) Cache L3 : 25 MiB (1 instance) Nœud(s) NUMA : 1 Nœud NUMA 0 de processeur(s) : 0-19 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] intel-extension-for-pytorch==2.0.110+xpu [pip3] numpy==1.25.2 [pip3] torch==2.0.1a0+cxx11.abi [pip3] torchvision==0.15.2a0+cxx11.abi [conda] N/A
@Serizao You can only allocate 4GB on the A770 16 GB
https://github.com/intel/intel-extension-for-pytorch/issues/325
A sad news 😢 but do you think my modele take 4GB ? On my memory monitory i don't see that
Describe the bug
A have a A770 16GB graphical card. I try to run finunning for a model . This is python code :
i have this error:
To test i try with extrem lower value for max_length (tokenizer) but it seem be the same result. So maybe there's a memory error.
Versions