I have a saved_model want to use NIC's PTQ, When I use examples/tensorflow/image_recognition/SavedModel/quantization/ptq to test it, The error occur:
2022-03-23 17:08:39 [INFO] Generate a fake evaluation function.
Traceback (most recent call last):
File "main.py", line 59, in <module>
evaluate_opt_graph.run()
File "main.py", line 48, in run
q_model = quantizer.fit()
File "/root/anaconda3/envs/tf2/lib/python3.7/site-packages/neural_compressor/experimental/quantization.py", line 212, in __call__
return super(Quantization, self).__call__()
File "/root/anaconda3/envs/tf2/lib/python3.7/site-packages/neural_compressor/experimental/component.py", line 214, in __call__
self.pre_process()
File "/root/anaconda3/envs/tf2/lib/python3.7/site-packages/neural_compressor/experimental/quantization.py", line 121, in pre_process
self._create_calib_dataloader(cfg)
File "/root/anaconda3/envs/tf2/lib/python3.7/site-packages/neural_compressor/experimental/quantization.py", line 112, in _create_calib_dataloader
self._calib_dataloader = create_dataloader(self.framework, calib_dataloader_cfg)
File "/root/anaconda3/envs/tf2/lib/python3.7/site-packages/neural_compressor/utils/create_obj_from_config.py", line 96, in create_dataloader
copy.deepcopy(dataloader_cfg['filter']),)
File "/root/anaconda3/envs/tf2/lib/python3.7/site-packages/neural_compressor/utils/create_obj_from_config.py", line 79, in create_dataset
transform=preprocess, filter=filter)
File "/root/anaconda3/envs/tf2/lib/python3.7/site-packages/neural_compressor/experimental/data/datasets/dataset.py", line 764, in __new__
raise ValueError('Found no files in --root matching: {}'.format(glob_pattern))
ValueError: Found no files in --root matching: ./data/*-*-of-*
my yaml conf:
model: # mandatory. used to specify model specific information.
name: origin_model
framework: tensorflow # mandatory. supported values are tensorflow, pytorch, pytorch_ipex, onnxrt_integer, onnxrt_qlinear or mxnet; allow new framework backend extension.
inputs: dense_input, sparse_ids_input, sparse_wgt_input, seq_50_input
outputs: dense
quantization: # optional. tuning constraints on model-wise for advance user to reduce tuning space.
calibration:
sampling_size: 20000 # optional. default value is 100. used to set how many samples should be used in calibration.
dataloader:
batch_size: 10
dataset:
TFRecordDataset:
root: ./data
model_wise: # optional. tuning constraints on model-wise for advance user to reduce tuning space.
activation:
algorithm: minmax
op_wise: {
'import/dnn/hiddenlayer_0/MatMul': {
'activation': {'dtype': ['uint8'], 'algorithm': ['minmax'], 'scheme':['asym']},
}
}
tuning:
accuracy_criterion:
relative: 0.01 # optional. default value is relative, other value is absolute. this example allows relative accuracy loss: 1%.
exit_policy:
timeout: 0 # optional. tuning timeout (seconds). default value is 0 which means early stop. combine with max_trials field to decide when to exit.
max_trials: 100 # optional. max tune times. default value is 100. combine with timeout field to decide when to exit.
random_seed: 9527 # optional. random seed for deterministic tuning.
I have a saved_model want to use NIC's PTQ, When I use
examples/tensorflow/image_recognition/SavedModel/quantization/ptq
to test it, The error occur:my yaml conf: