Invoke is a leading creative engine for Stable Diffusion models, empowering professionals, artists, and enthusiasts to generate and create visual media using the latest AI-driven technologies. The solution offers an industry leading WebUI, and serves as the foundation for multiple commercial products.
Opened Invoke with Web based Browser
Typed in: Anime Girl with Green hair and Red eyes into Text to Image prompt
Set width and Height to 320 x 320
Steps to 50
Invoke
Screenshots
Traceback (most recent call last): File "D:\InvokeAI.venv\lib\site-packages\ldm\generate.py", line 559, in prompt2image results = generator.generate( File "D:\InvokeAI.venv\lib\site-packages\ldm\invoke\generator\base.py", line 115, in generate image = make_image(x_T) File "D:\InvokeAI.venv\lib\site-packages\ldm\invoke\generator\txt2img.py", line 45, in make_image pipeline_output = pipeline.image_from_embeddings( File "D:\InvokeAI.venv\lib\site-packages\ldm\invoke\generator\diffusers_pipeline.py", line 419, in image_from_embeddings result_latents, result_attention_map_saver = self.latents_from_embeddings( File "D:\InvokeAI.venv\lib\site-packages\ldm\invoke\generator\diffusers_pipeline.py", line 445, in latents_from_embeddings result: PipelineIntermediateState = infer_latents_from_embeddings( File "D:\InvokeAI.venv\lib\site-packages\ldm\invoke\generator\diffusers_pipeline.py", line 178, in call for result in self.generator_method(*args, kwargs): File "D:\InvokeAI.venv\lib\site-packages\ldm\invoke\generator\diffusers_pipeline.py", line 481, in generate_latents_from_embeddings step_output = self.step(batched_t, latents, conditioning_data, File "D:\InvokeAI.venv\lib\site-packages\torch\autograd\grad_mode.py", line 27, in decorate_context return func(*args, *kwargs) File "D:\InvokeAI.venv\lib\site-packages\ldm\invoke\generator\diffusers_pipeline.py", line 525, in step noise_pred = self.invokeai_diffuser.do_diffusion_step( File "D:\InvokeAI.venv\lib\site-packages\ldm\models\diffusion\shared_invokeai_diffusion.py", line 166, in do_diffusion_step unconditioned_next_x, conditioned_next_x = self._apply_standard_conditioning( File "D:\InvokeAI.venv\lib\site-packages\ldm\models\diffusion\shared_invokeai_diffusion.py", line 207, in _apply_standard_conditioning both_results = self.model_forward_callback(x_twice, sigma_twice, both_conditionings) File "D:\InvokeAI.venv\lib\site-packages\ldm\invoke\generator\diffusers_pipeline.py", line 559, in _unet_forward return self.unet(latents, t, text_embeddings, File "D:\InvokeAI.venv\lib\site-packages\torch\nn\modules\module.py", line 1194, in _call_impl return forward_call(input, kwargs) File "D:\InvokeAI.venv\lib\site-packages\diffusers\models\unet_2d_condition.py", line 582, in forward sample, res_samples = downsample_block( File "D:\InvokeAI.venv\lib\site-packages\torch\nn\modules\module.py", line 1194, in _call_impl return forward_call(*input, kwargs) File "D:\InvokeAI.venv\lib\site-packages\diffusers\models\unet_2d_blocks.py", line 837, in forward hidden_states = attn( File "D:\InvokeAI.venv\lib\site-packages\torch\nn\modules\module.py", line 1194, in _call_impl return forward_call(*input, *kwargs) File "D:\InvokeAI.venv\lib\site-packages\diffusers\models\transformer_2d.py", line 265, in forward hidden_states = block( File "D:\InvokeAI.venv\lib\site-packages\torch\nn\modules\module.py", line 1194, in _call_impl return forward_call(input, kwargs) File "D:\InvokeAI.venv\lib\site-packages\diffusers\models\attention.py", line 291, in forward attn_output = self.attn1( File "D:\InvokeAI.venv\lib\site-packages\torch\nn\modules\module.py", line 1194, in _call_impl return forward_call(*input, **kwargs) File "D:\InvokeAI.venv\lib\site-packages\diffusers\models\cross_attention.py", line 205, in forward return self.processor( File "D:\InvokeAI.venv\lib\site-packages\diffusers\models\cross_attention.py", line 456, in call hidden_states = xformers.ops.memory_efficient_attention( File "D:\InvokeAI.venv\lib\site-packages\xformers\ops\fmha__init.py", line 197, in memory_efficient_attention return _memory_efficient_attention( File "D:\InvokeAI.venv\lib\site-packages\xformers\ops\fmha__init__.py", line 293, in _memory_efficient_attention return _memory_efficient_attention_forward( File "D:\InvokeAI.venv\lib\site-packages\xformers\ops\fmha\init__.py", line 309, in _memory_efficient_attention_forward op = _dispatch_fw(inp) File "D:\InvokeAI.venv\lib\site-packages\xformers\ops\fmha\dispatch.py", line 95, in _dispatch_fw return _run_priority_list( File "D:\InvokeAI.venv\lib\site-packages\xformers\ops\fmha\dispatch.py", line 70, in _run_priority_list raise NotImplementedError(msg) NotImplementedError: No operator found for memory_efficient_attention_forward with inputs: query : shape=(10, 1600, 1, 64) (torch.float32) key : shape=(10, 1600, 1, 64) (torch.float32) value : shape=(10, 1600, 1, 64) (torch.float32) attn_bias : <class 'NoneType'> p : 0.0 cutlassF is not supported because: device=cpu (supported: {'cuda'}) flshattF is not supported because: device=cpu (supported: {'cuda'}) dtype=torch.float32 (supported: {torch.float16, torch.bfloat16}) tritonflashattF is not supported because: device=cpu (supported: {'cuda'}) dtype=torch.float32 (supported: {torch.float16, torch.bfloat16}) triton is not available smallkF is not supported because: max(query.shape[-1] != value.shape[-1]) > 32 unsupported embed per head: 64 >> Could not generate image.
Is there an existing issue for this?
OS
Windows
GPU
cuda
VRAM
4GB
What version did you experience this issue on?
2.3.2
What happened?
Opened Invoke with Web based Browser Typed in: Anime Girl with Green hair and Red eyes into Text to Image prompt Set width and Height to 320 x 320 Steps to 50 Invoke
Screenshots
Traceback (most recent call last): File "D:\InvokeAI.venv\lib\site-packages\ldm\generate.py", line 559, in prompt2image results = generator.generate( File "D:\InvokeAI.venv\lib\site-packages\ldm\invoke\generator\base.py", line 115, in generate image = make_image(x_T) File "D:\InvokeAI.venv\lib\site-packages\ldm\invoke\generator\txt2img.py", line 45, in make_image pipeline_output = pipeline.image_from_embeddings( File "D:\InvokeAI.venv\lib\site-packages\ldm\invoke\generator\diffusers_pipeline.py", line 419, in image_from_embeddings result_latents, result_attention_map_saver = self.latents_from_embeddings( File "D:\InvokeAI.venv\lib\site-packages\ldm\invoke\generator\diffusers_pipeline.py", line 445, in latents_from_embeddings result: PipelineIntermediateState = infer_latents_from_embeddings( File "D:\InvokeAI.venv\lib\site-packages\ldm\invoke\generator\diffusers_pipeline.py", line 178, in call for result in self.generator_method(*args, kwargs): File "D:\InvokeAI.venv\lib\site-packages\ldm\invoke\generator\diffusers_pipeline.py", line 481, in generate_latents_from_embeddings step_output = self.step(batched_t, latents, conditioning_data, File "D:\InvokeAI.venv\lib\site-packages\torch\autograd\grad_mode.py", line 27, in decorate_context return func(*args, *kwargs) File "D:\InvokeAI.venv\lib\site-packages\ldm\invoke\generator\diffusers_pipeline.py", line 525, in step noise_pred = self.invokeai_diffuser.do_diffusion_step( File "D:\InvokeAI.venv\lib\site-packages\ldm\models\diffusion\shared_invokeai_diffusion.py", line 166, in do_diffusion_step unconditioned_next_x, conditioned_next_x = self._apply_standard_conditioning( File "D:\InvokeAI.venv\lib\site-packages\ldm\models\diffusion\shared_invokeai_diffusion.py", line 207, in _apply_standard_conditioning both_results = self.model_forward_callback(x_twice, sigma_twice, both_conditionings) File "D:\InvokeAI.venv\lib\site-packages\ldm\invoke\generator\diffusers_pipeline.py", line 559, in _unet_forward return self.unet(latents, t, text_embeddings, File "D:\InvokeAI.venv\lib\site-packages\torch\nn\modules\module.py", line 1194, in _call_impl return forward_call(input, kwargs) File "D:\InvokeAI.venv\lib\site-packages\diffusers\models\unet_2d_condition.py", line 582, in forward sample, res_samples = downsample_block( File "D:\InvokeAI.venv\lib\site-packages\torch\nn\modules\module.py", line 1194, in _call_impl return forward_call(*input, kwargs) File "D:\InvokeAI.venv\lib\site-packages\diffusers\models\unet_2d_blocks.py", line 837, in forward hidden_states = attn( File "D:\InvokeAI.venv\lib\site-packages\torch\nn\modules\module.py", line 1194, in _call_impl return forward_call(*input, *kwargs) File "D:\InvokeAI.venv\lib\site-packages\diffusers\models\transformer_2d.py", line 265, in forward hidden_states = block( File "D:\InvokeAI.venv\lib\site-packages\torch\nn\modules\module.py", line 1194, in _call_impl return forward_call(input, kwargs) File "D:\InvokeAI.venv\lib\site-packages\diffusers\models\attention.py", line 291, in forward attn_output = self.attn1( File "D:\InvokeAI.venv\lib\site-packages\torch\nn\modules\module.py", line 1194, in _call_impl return forward_call(*input, **kwargs) File "D:\InvokeAI.venv\lib\site-packages\diffusers\models\cross_attention.py", line 205, in forward return self.processor( File "D:\InvokeAI.venv\lib\site-packages\diffusers\models\cross_attention.py", line 456, in call hidden_states = xformers.ops.memory_efficient_attention( File "D:\InvokeAI.venv\lib\site-packages\xformers\ops\fmha__init.py", line 197, in memory_efficient_attention return _memory_efficient_attention( File "D:\InvokeAI.venv\lib\site-packages\xformers\ops\fmha__init__.py", line 293, in _memory_efficient_attention return _memory_efficient_attention_forward( File "D:\InvokeAI.venv\lib\site-packages\xformers\ops\fmha\init__.py", line 309, in _memory_efficient_attention_forward op = _dispatch_fw(inp) File "D:\InvokeAI.venv\lib\site-packages\xformers\ops\fmha\dispatch.py", line 95, in _dispatch_fw return _run_priority_list( File "D:\InvokeAI.venv\lib\site-packages\xformers\ops\fmha\dispatch.py", line 70, in _run_priority_list raise NotImplementedError(msg) NotImplementedError: No operator found for
memory_efficient_attention_forward
with inputs: query : shape=(10, 1600, 1, 64) (torch.float32) key : shape=(10, 1600, 1, 64) (torch.float32) value : shape=(10, 1600, 1, 64) (torch.float32) attn_bias : <class 'NoneType'> p : 0.0cutlassF
is not supported because: device=cpu (supported: {'cuda'})flshattF
is not supported because: device=cpu (supported: {'cuda'}) dtype=torch.float32 (supported: {torch.float16, torch.bfloat16})tritonflashattF
is not supported because: device=cpu (supported: {'cuda'}) dtype=torch.float32 (supported: {torch.float16, torch.bfloat16}) triton is not availablesmallkF
is not supported because: max(query.shape[-1] != value.shape[-1]) > 32 unsupported embed per head: 64 >> Could not generate image.Additional context
No response
Contact Details
No response