Closed bfocassio closed 3 years ago
Dear all,
I'm trying to compute the eigenvalues for the inversion symmetry operator for MoS2 in the TMDC-H' structure.
The problem is that I'm getting eigenvalues equal to zero at some TRIM points.
The output is:
'NoneType' object has no attribute 'split' ----------INFORMATION ABOUT THE UNIT CELL----------- Primitive vectors : [[ 5.722851 0. 0. ] [ 0. 3.173255 0. ] [ 0. 0. 20.16 ]] Atomic positions: [[0.802497 0.75 0.49631 ] [0.197503 0.25 0.50369 ] [0.083583 0.75 0.586158] [0.578635 0.25 0.565937] [0.421365 0.75 0.434063] [0.916417 0.25 0.413842]] Atom type indices: [1, 1, 2, 2, 2, 2] Reciprocal lattice: [[1.09791174 0. 0. ] [0. 1.98004425 0. ] [0. 0. 0.31166594]] reading symmetries Placing origin at [0. 0. 0.] where [0. 0. 0.] = [0. 0. 0.] + [0. 0. 0.] x refUC The transformation to the convenctional cell is given by: | 1.0000 0.0000 0.0000 | refUC = | 0.0000 1.0000 0.0000 | shiftUC = [-0. -0. -0.] | 0.0000 0.0000 1.0000 | Lattice vectors of DFT (a) and reference (c) cells: a(0)=[ 5.7229 0.0000 0.0000 ] c(0)=[ 5.7229 0.0000 0.0000 ] a(1)=[ 0.0000 3.1733 0.0000 ] c(1)=[ 0.0000 3.1733 0.0000 ] a(2)=[ 0.0000 0.0000 20.1600 ] c(2)=[ 0.0000 0.0000 20.1600 ] Efermi = -2.5126 eV WAVECAR contains 4 k-points and 44 bands. Saving 36 bands starting from 1 in the output Energy cutoff in WAVECAR : 400.0 Energy cutoff reduced to : 50.0 0 0 10 1055 20 3927 30 6151 0 0 10 1044 20 3912 30 6128 0 0 10 1028 20 3952 30 6148 0 0 10 1028 20 3966 30 6188 ---------- INFORMATION ABOUT THE SPACE GROUP ---------- Space group P2_1/m (# 11) has 4 symmetry operations ### 1 rotation : | 1 0 0 | | 0 1 0 | | 0 0 1 | spinor rot. : | 1.000+0.000j 0.000+0.000j | | 0.000+0.000j 1.000+0.000j | spinor rot. (refUC) : | 1.000+0.000j 0.000+0.000j | | 0.000+0.000j 1.000+0.000j | translation : [ 0.0000 0.0000 0.0000 ] axis: [0. 0. 1.] ; angle = 0 , inversion : False ### 2 rotation : | -1 0 0 | | 0 1 0 | | 0 0 -1 | spinor rot. : | 0.000+0.000j -1.000+0.000j | | 1.000+0.000j 0.000+0.000j | spinor rot. (refUC) : |-0.000+0.000j 1.000-0.000j | |-1.000+0.000j -0.000+0.000j | translation : [ 0.0000 0.5000 0.0000 ] axis: [0. 1. 0.] ; angle = 1 pi, inversion : False ### 3 rotation : | -1 0 0 | | 0 -1 0 | | 0 0 -1 | spinor rot. : | 1.000+0.000j 0.000+0.000j | | 0.000+0.000j 1.000+0.000j | spinor rot. (refUC) : | 1.000+0.000j 0.000+0.000j | | 0.000+0.000j 1.000+0.000j | translation : [ 0.0000 0.0000 0.0000 ] axis: [0. 0. 1.] ; angle = 0 , inversion : True ### 4 rotation : | 1 0 0 | | 0 -1 0 | | 0 0 1 | spinor rot. : | 0.000+0.000j -1.000+0.000j | | 1.000+0.000j 0.000+0.000j | spinor rot. (refUC) : |-0.000+0.000j 1.000-0.000j | |-1.000+0.000j -0.000+0.000j | translation : [ 0.0000 0.5000 0.0000 ] axis: [0. 1. 0.] ; angle = 1 pi, inversion : True reading symmetries k-point 1 :[0. 0. 0.] number of states = 328 Energy | degeneracy | irreps | sym. operations | | | 1 2 3 4 -14.0380 | 2 | -GM3(1.0), -GM4(1.0) | 2.0000 0.0000 2.0000 0.0000 -13.0505 | 2 | -GM5(1.0), -GM6(1.0) | 2.0000 0.0000 -2.0000 0.0000 -12.3138 | 2 | -GM5(1.0), -GM6(1.0) | 2.0000 0.0000 -2.0000 -0.0000 -12.2332 | 2 | -GM3(1.0), -GM4(1.0) | 2.0000 -0.0000 2.0000 0.0000 -5.9864 | 2 | -GM5(1.0), -GM6(1.0) | 2.0000 -0.0000 -2.0000 -0.0000 -5.3411 | 2 | -GM3(1.0), -GM4(1.0) | 2.0000 -0.0000 2.0000 -0.0000 -4.5843 | 2 | -GM3(1.0), -GM4(1.0) | 2.0000 -0.0000 2.0000 0.0000 -4.4817 | 2 | -GM5(1.0), -GM6(1.0) | 2.0000 0.0000 -2.0000 0.0000 -3.3463 | 2 | -GM5(1.0), -GM6(1.0) | 2.0000 0.0000 -2.0000 -0.0000 -3.2443 | 2 | -GM3(1.0), -GM4(1.0) | 2.0000 -0.0000 2.0000 0.0000 -2.8413 | 2 | -GM3(1.0), -GM4(1.0) | 2.0000 -0.0000 2.0000 0.0000 -2.4726 | 2 | -GM3(1.0), -GM4(1.0) | 2.0000 0.0000 2.0000 0.0000 -1.9148 | 2 | -GM5(1.0), -GM6(1.0) | 2.0000 0.0000 -2.0000 0.0000 -1.2695 | 2 | -GM5(1.0), -GM6(1.0) | 2.0000 0.0000 -2.0000 0.0000 -0.9933 | 2 | -GM3(1.0), -GM4(1.0) | 2.0000 -0.0000 2.0000 -0.0000 -0.4827 | 2 | -GM3(1.0), -GM4(1.0) | 2.0000 -0.0000 2.0000 -0.0000 -0.3277 | 2 | -GM5(1.0), -GM6(1.0) | 2.0000 0.0000 -2.0000 0.0000 -0.0962 | 2 | -GM3(1.0), -GM4(1.0) | 2.0000 -0.0000 2.0000 0.0000 inversion is # 3 number of inversions-odd Kramers pairs : 8 Gap with upper bands : 0.531060616569321 reading symmetries k-point 2 :[0.5 0. 0. ] number of states = 324 Energy | degeneracy | irreps | sym. operations | | | 1 2 3 4 -13.3479 | 2 | -Y3(1.0), -Y4(1.0) | 2.0000 0.0000 2.0000 -0.0000 -13.3346 | 2 | -Y5(1.0), -Y6(1.0) | 2.0000 0.0000 -2.0000 -0.0000 -12.8518 | 2 | -Y5(1.0), -Y6(1.0) | 2.0000 0.0000 -2.0000 0.0000 -12.3087 | 2 | -Y3(1.0), -Y4(1.0) | 2.0000 0.0000 2.0000 -0.0000 -5.4570 | 2 | -Y5(1.0), -Y6(1.0) | 2.0000 0.0000 -2.0000 -0.0000 -5.1012 | 2 | -Y3(1.0), -Y4(1.0) | 2.0000 -0.0000 2.0000 -0.0000 -4.6896 | 2 | -Y5(1.0), -Y6(1.0) | 2.0000 -0.0000 -2.0000 0.0000 -3.7471 | 2 | -Y5(1.0), -Y6(1.0) | 2.0000 -0.0000 -2.0000 0.0000 -3.5145 | 2 | -Y3(1.0), -Y4(1.0) | 2.0000 0.0000 2.0000 -0.0000 -3.2163 | 2 | -Y5(1.0), -Y6(1.0) | 2.0000 -0.0000 -2.0000 -0.0000 -2.9178 | 2 | -Y3(1.0), -Y4(1.0) | 2.0000 -0.0000 2.0000 0.0000 -2.5203 | 2 | -Y3(1.0), -Y4(1.0) | 2.0000 0.0000 2.0000 -0.0000 -2.0585 | 2 | -Y5(1.0), -Y6(1.0) | 2.0000 0.0000 -2.0000 -0.0000 -1.2484 | 2 | -Y5(1.0), -Y6(1.0) | 2.0000 0.0000 -2.0000 -0.0000 -1.1488 | 2 | -Y5(1.0), -Y6(1.0) | 2.0000 -0.0000 -2.0000 0.0000 -1.0747 | 2 | -Y3(1.0), -Y4(1.0) | 2.0000 0.0000 2.0000 0.0000 -0.8511 | 2 | -Y3(1.0), -Y4(1.0) | 2.0000 -0.0000 2.0000 0.0000 -0.6662 | 2 | -Y3(1.0), -Y4(1.0) | 2.0000 0.0000 2.0000 -0.0000 inversion is # 3 number of inversions-odd Kramers pairs : 9 Gap with upper bands : 0.9114263180867801 reading symmetries k-point 3 :[0. 0.5 0. ] number of states = 324 Energy | degeneracy | irreps | sym. operations | | | 1 2 3 4 -12.4507 | 4 | -Z2(2.0) | 4.0000 0.0000 0.0000 0.0000 -11.9693 | 4 | -Z2(2.0) | 4.0000 -0.0000 0.0000 0.0000 -5.2404 | 4 | -Z2(2.0) | 4.0000 0.0000 -0.0000 0.0000 -4.8488 | 4 | -Z2(2.0) | 4.0000 -0.0000 0.0000 0.0000 -4.1170 | 4 | -Z2(2.0) | 4.0000 0.0000 -0.0000 0.0000 -3.0178 | 4 | -Z2(2.0) | 4.0000 -0.0000 0.0000 0.0000 -2.9034 | 4 | -Z2(2.0) | 4.0000 0.0000 -0.0000 0.0000 -1.9015 | 4 | -Z2(2.0) | 4.0000 0.0000 -0.0000 0.0000 -1.2046 | 4 | -Z2(2.0) | 4.0000 0.0000 -0.0000 0.0000 inversion is # 3 number of inversions-odd Kramers pairs : 9 Gap with upper bands : 3.217323964361185 reading symmetries k-point 4 :[0.5 0.5 0. ] number of states = 324 Energy | degeneracy | irreps | sym. operations | | | 1 2 3 4 -12.5529 | 4 | -C2(2.0) | 4.0000 -0.0000 -0.0000 0.0000 -11.8329 | 4 | -C2(2.0) | 4.0000 -0.0000 0.0000 0.0000 -6.0358 | 4 | -C2(2.0) | 4.0000 -0.0000 -0.0000 0.0000 -4.5667 | 4 | -C2(2.0) | 4.0000 0.0000 0.0000 0.0000 -3.8684 | 4 | -C2(2.0) | 4.0000 0.0000 0.0000 0.0000 -3.1708 | 4 | -C2(2.0) | 4.0000 -0.0000 0.0000 0.0000 -2.3999 | 4 | -C2(2.0) | 4.0000 0.0000 -0.0000 0.0000 -1.8984 | 4 | -C2(2.0) | 4.0000 0.0000 -0.0000 0.0000 -0.8169 | 4 | -C2(2.0) | 4.0000 -0.0000 0.0000 0.0000 inversion is # 3 number of inversions-odd Kramers pairs : 9 Gap with upper bands : 2.604040594501429 number of inversions-odd Kramers pairs IN THE LISTED KPOINTS: 35 Z4= 3 Minimal direct gap: 0.531060616569321 eV indirect gap: 0.3413834160661504 eV
This is normal, all irreps for thiese kpoints are 2dimi sional with the trace of the inversion matrix equal to zero. Plus TRS doubles the degeneracy to 4.
Thank you very much
Dear all,
I'm trying to compute the eigenvalues for the inversion symmetry operator for MoS2 in the TMDC-H' structure.
The problem is that I'm getting eigenvalues equal to zero at some TRIM points.
The output is: