irthomasthomas / undecidability

13 stars 2 forks source link

codelion/optillm - Automatic prompt strategy proxy #922

Open ShellLM opened 2 months ago

ShellLM commented 2 months ago

optillm

optillm is an OpenAI API compatible optimizing inference proxy which implements several state-of-the-art techniques that can improve the accuracy and performance of LLMs. The current focus is on implementing techniques that improve reasoning over coding, logical and mathematical queries. It is possible to beat the frontier models using these techniques across diverse tasks by doing additional compute at inference time.

SOTA results with moa-gpt-4o-mini on Arena-Hard-Auto

Results showing Mixture of Agents approach using gpt-4o-mini on Arena Hard Auto Benchmark

Installation

Just clone the repository with git and use pip install to setup the dependencies.

git clone https://github.com/codelion/optillm.git
cd optillm
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt

You can then run the optillm proxy as follows.

python optillm.py                           
2024-09-06 07:57:14,191 - INFO - Starting server with approach: auto
2024-09-06 07:57:14,191 - INFO - Server configuration: {'approach': 'auto', 'mcts_simulations': 2, 'mcts_exploration': 0.2, 'mcts_depth': 1, 'best_of_n': 3, 'model': 'gpt-4o-mini', 'rstar_max_depth': 3, 'rstar_num_rollouts': 5, 'rstar_c': 1.4, 'base_url': ''}
 * Serving Flask app 'optillm'
 * Debug mode: off
2024-09-06 07:57:14,212 - INFO - WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead.
 * Running on all addresses (0.0.0.0)
 * Running on http://127.0.0.1:8000
 * Running on http://192.168.10.48:8000
2024-09-06 07:57:14,212 - INFO - Press CTRL+C to quit

Usage

Once the proxy is running, you can just use it as a drop in replacement for an OpenAI client by setting the base_url as http://localhost:8000/v1.

import os
from openai import OpenAI

OPENAI_KEY = os.environ.get("OPENAI_API_KEY")
OPENAI_BASE_URL = "http://localhost:8000/v1"
client = OpenAI(api_key=OPENAI_KEY, base_url=OPENAI_BASE_URL)

response = client.chat.completions.create(
  model="moa-gpt-4o",
  messages=[
    {
      "role": "user",
      "content": "Write a Python program to build an RL model to recite text from any position that the user provides, using only numpy."
    }
  ],
  temperature=0.2
)

print(response)

You can control the technique you use for optimization by prepending the slug to the model name {slug}-model-name. E.g. in the above code we are using moa or mixture of agents as the optimization approach. In the proxy logs you will see the following showing the moa is been used with the base model as gpt-4o-mini.

2024-09-06 08:35:32,597 - INFO - Using approach moa, with gpt-4o-mini
2024-09-06 08:35:35,358 - INFO - HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
2024-09-06 08:35:39,553 - INFO - HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
2024-09-06 08:35:44,795 - INFO - HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
2024-09-06 08:35:44,797 - INFO - 127.0.0.1 - - [06/Sep/2024 08:35:44] "POST /v1/chat/completions HTTP/1.1" 200 -

Implemented techniques

Technique Slug Description
Monte Carlo Tree Search mcts Uses MCTS for decision-making in chat responses
Best of N Sampling bon Generates multiple responses and selects the best one
Mixture of Agents moa Combines responses from multiple critiques
Round Trip Optimization rto Optimizes responses through a round-trip process
Z3 Solver z3 Utilizes the Z3 theorem prover for logical reasoning
Self-Consistency self_consistency Implements an advanced self-consistency method
PV Game pvg Applies a prover-verifier game approach at inference time
R* Algorithm rstar Implements the R* algorithm for problem-solving
CoT with Reflection cot_reflection Implements chain-of-thought reasoning with \<thinking>, \ and \<output> sections
PlanSearch plansearch Implements a search algorithm over candidate plans for solving a problem in natural language

References

Suggested labels

None

ShellLM commented 2 months ago

Related content

884 similarity score: 0.91

418 similarity score: 0.91

774 similarity score: 0.91

396 similarity score: 0.9

390 similarity score: 0.9

683 similarity score: 0.9