Open whuhxb opened 1 year ago
Hey @whuhxb, The problem is that the testing results contain NaN values. The NaN values can be caused by various factors, including invalid calculations, such as dividing by zero or taking the square root of a negative number.
I suggest you some solutions, You can try it to resolve your issue:
Have you reslove this problem? I'm having the same issue
Checklist
master
branch).My Question
I have run the training code of RandLANet with TF version on Paris Lille dataset with the command: python scripts/run_pipeline.py tf -c ml3d/configs/randlanet_parislille3d.yml --dataset.dataset_path dataset/Paris-Lille-3D --pipeline SemanticSegmentation --dataset.use_cache True --num_workers 0 Which command to test the semantic segmentation results of RandLANet on Paris Lille dataset? I have tested with the following command, but get the wrong results. python scripts/run_pipeline.py tf -c ml3d/configs/randlanet_parislille3d.yml --split test --dataset.dataset_path dataset/Paris-Lille-3D --pipeline SemanticSegmentation --dataset.use_cache True --num_workers 0
What's the problem? Thanks in advance.
Started testing running inference Accuracy : [0.6033437, nan, nan, nan, nan, nan, nan, nan, nan, 0.6033437] IoU : [0.6033437, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.06703818888888889] running inference Accuracy : [0.563903, nan, nan, nan, nan, nan, nan, nan, nan, 0.563903] IoU : [0.563903, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0626558888888889] running inference Accuracy : [0.6278404, nan, nan, nan, nan, nan, nan, nan, nan, 0.6278404] IoU : [0.6278404, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.06976004444444445] Per class Accuracy : [nan, nan, nan, nan, nan, nan, nan, nan, nan] Per class IOUs : [nan, nan, nan, nan, nan, nan, nan, nan, nan] Overall Accuracy : nan Overall IOU : nan