iterative / vscode-dvc

Machine learning experiment tracking and data versioning with DVC extension for VS Code
https://marketplace.visualstudio.com/items?itemName=Iterative.dvc
Apache License 2.0
197 stars 29 forks source link

Incorrect display smooth feature #3837

Open SoyGema opened 1 year ago

SoyGema commented 1 year ago

CONTEXT : Neural Machine Translation training scenario.

The smoothing feature shows two lines instead of one. The thicker green line should be transformed as the UI smoothing basr is moving through the bar but it´s not.

https://user-images.githubusercontent.com/24204714/236618849-5b88dd69-e1ae-4f40-a9ee-2993ac6248c6.mp4

From conversation in Discord

Increasing plot size test seems to have the same issue

increasingplotsize

Machine Learning Epicstemics coming from the conversation in discord

The signal or number of datapoints can increase significantly when we change the batch size parameter during experiments : batch size controls the accuracy of the estimate of the error gradient when training Neural Networks. Too large batch sizes -less data points- may cause bad generalization. Many data points (smaller batch sizes ) take more training time but might have better generalization.

Iterating over this parameter can be a common case of experimentation scenario.

NOTE for machine learning practitioners: this parameter starts with 8 and increases by powers of 2. Experimenting with this parameter is key for better generalization by having other rational hypotheses in mind. This article gives good hints.

For developers

Nice work !

shcheklein commented 1 year ago

It's more related to dvc-render to be honest, but let's keep it here for now (cc @daavoo @dberenbaum ) . Some customers (Studio) also were mentioning broken and over aggressive smoothing which forced them to stay with TB. We need to got back and research the templates again I guess. Making p1, assigning to myself, David, and Dave. We'll try to get to it.

SoyGema commented 1 year ago

It's more related to dvc-render to be honest, but .... -->Hey thanks for this. From now on I´ll make the effort to explore codebases to report bugs more efficiently! We'll try to get to it. --> You´ve got it!

mattseddon commented 1 year ago

My $0.02 is (even on a laptop) when the plot is given the screen's entire space that the experience isn't that bad:

https://user-images.githubusercontent.com/37993418/237011864-51e5db42-1344-4116-9026-1b8398f0e83c.mov

On a wide screen you get an even better sense of what is going on:

https://user-images.githubusercontent.com/37993418/237012565-e6467f9c-1cd3-42e5-b777-c1aced852736.mov

daavoo commented 1 year ago

I think the underlying problems here are:

go2carter commented 1 year ago

Generally, there seems to be some aggressive smoothing for what I'd expect, especially at the edges of plots. If there's interpolation with linear, where smoothness of 1 is linear, then I can definitely see why that is. I would not expect linear--I guess I'm someone expecting more like the "TensorBoard behavior". @daavoo , I think that first bullet is exactly where I'm coming from

For an example of what I'd expect, I'm attaching examples what tensorboard does

image image image

And this is studio: image image image

shcheklein commented 1 year ago

I'm looking into this (trying different Vega hacks). For the record, this is the Vega dump that can be used in the Vega editor:

```json { "$schema": "https://vega.github.io/schema/vega-lite/v5.json", "data": { "values": [ { "step": 0, "accuracy_train": "0.0", "rev": "workspace" }, { "step": 1, "accuracy_train": "0.0", "rev": "workspace" }, { "step": 2, "accuracy_train": "0.0", "rev": "workspace" }, { "step": 3, "accuracy_train": "0.0", "rev": "workspace" }, { "step": 4, "accuracy_train": "0.0", "rev": "workspace" }, { "step": 5, "accuracy_train": "0.0", "rev": "workspace" }, { "step": 6, "accuracy_train": "0.0", "rev": "workspace" }, { "step": 7, "accuracy_train": "0.0", "rev": "workspace" }, { "step": 8, "accuracy_train": "0.0", "rev": "workspace" }, { "step": 9, "accuracy_train": "7.027406536508352e-05", "rev": "workspace" }, { "step": 10, "accuracy_train": "6.388551992131397e-05", "rev": "workspace" }, { "step": 11, "accuracy_train": "0.00011732993880286813", "rev": "workspace" }, { "step": 12, "accuracy_train": "0.00017272924014832824", "rev": "workspace" }, { "step": 13, "accuracy_train": "0.0001603914424777031", "rev": "workspace" }, { "step": 14, "accuracy_train": "0.0003600036143325269", "rev": "workspace" }, { "step": 15, "accuracy_train": "0.0006608589319512248", "rev": "workspace" }, { "step": 16, "accuracy_train": "0.0009273633477278054", "rev": "workspace" }, { "step": 17, "accuracy_train": "0.001841690856963396", "rev": "workspace" }, { "step": 18, "accuracy_train": "0.0036847058217972517", "rev": "workspace" }, { "step": 19, "accuracy_train": "0.006334620527923107", "rev": "workspace" }, { "step": 20, "accuracy_train": "0.011472896672785282", "rev": "workspace" }, { "step": 21, "accuracy_train": "0.019665148109197617", "rev": "workspace" }, { "step": 22, "accuracy_train": "0.030836043879389763", "rev": "workspace" }, { "step": 23, "accuracy_train": "0.04692433401942253", "rev": "workspace" }, { "step": 24, "accuracy_train": "0.06700370460748672", "rev": "workspace" }, { "step": 25, "accuracy_train": "0.09210359305143356", "rev": "workspace" }, { "step": 26, "accuracy_train": "0.1183219775557518", "rev": "workspace" }, { "step": 27, "accuracy_train": "0.14470842480659485", "rev": "workspace" }, { "step": 28, "accuracy_train": "0.17087672650814056", "rev": "workspace" }, { "step": 29, "accuracy_train": "0.1962459832429886", "rev": "workspace" }, { "step": 30, "accuracy_train": "0.22028383612632751", "rev": "workspace" }, { "step": 31, "accuracy_train": "0.24271342158317566", "rev": "workspace" }, { "step": 32, "accuracy_train": "0.26400768756866455", "rev": "workspace" }, { "step": 33, "accuracy_train": "0.2843042016029358", "rev": "workspace" }, { "step": 34, "accuracy_train": "0.30344653129577637", "rev": "workspace" }, { "step": 35, "accuracy_train": "0.321421355009079", "rev": "workspace" }, { "step": 36, "accuracy_train": "0.3384588062763214", "rev": "workspace" }, { "step": 37, "accuracy_train": "0.35466134548187256", "rev": "workspace" }, { "step": 38, "accuracy_train": "0.36987215280532837", "rev": "workspace" }, { "step": 39, "accuracy_train": "0.3840927481651306", "rev": "workspace" }, { "step": 40, "accuracy_train": "0.39798834919929504", "rev": "workspace" }, { "step": 41, "accuracy_train": "0.41096988320350647", "rev": "workspace" }, { "step": 42, "accuracy_train": "0.42340797185897827", "rev": "workspace" }, { "step": 43, "accuracy_train": "0.4354696571826935", "rev": "workspace" }, { "step": 44, "accuracy_train": "0.44676175713539124", "rev": "workspace" }, { "step": 45, "accuracy_train": "0.45774802565574646", "rev": "workspace" }, { "step": 46, "accuracy_train": "0.4681800305843353", "rev": "workspace" }, { "step": 47, "accuracy_train": "0.4783846139907837", "rev": "workspace" }, { "step": 48, "accuracy_train": "0.4879940450191498", "rev": "workspace" }, { "step": 49, "accuracy_train": "0.49726226925849915", "rev": "workspace" }, { "step": 50, "accuracy_train": "0.5061734914779663", "rev": "workspace" }, { "step": 51, "accuracy_train": "0.5147313475608826", "rev": "workspace" }, { "step": 52, "accuracy_train": "0.5229606032371521", "rev": "workspace" }, { "step": 53, "accuracy_train": "0.5308094620704651", "rev": "workspace" }, { "step": 54, "accuracy_train": "0.5384282469749451", "rev": "workspace" }, { "step": 55, "accuracy_train": "0.5457383990287781", "rev": "workspace" }, { "step": 56, "accuracy_train": "0.5528160929679871", "rev": "workspace" }, { "step": 57, "accuracy_train": "0.5596035122871399", "rev": "workspace" }, { "step": 58, "accuracy_train": "0.5662795305252075", "rev": "workspace" }, { "step": 59, "accuracy_train": "0.5725557804107666", "rev": "workspace" }, { "step": 60, "accuracy_train": "0.5788120627403259", "rev": "workspace" }, { "step": 61, "accuracy_train": "0.5848563313484192", "rev": "workspace" }, { "step": 62, "accuracy_train": "0.5907113552093506", "rev": "workspace" }, { "step": 63, "accuracy_train": "0.5963535308837891", "rev": "workspace" }, { "step": 64, "accuracy_train": "0.6018657088279724", "rev": "workspace" }, { "step": 65, "accuracy_train": "0.6071356534957886", "rev": "workspace" }, { "step": 66, "accuracy_train": "0.6122435927391052", "rev": "workspace" }, { "step": 67, "accuracy_train": "0.6172387599945068", "rev": "workspace" }, { "step": 68, "accuracy_train": "0.622154176235199", "rev": "workspace" }, { "step": 69, "accuracy_train": "0.6268956065177917", "rev": "workspace" }, { "step": 70, "accuracy_train": "0.6313748955726624", "rev": "workspace" }, { "step": 71, "accuracy_train": "0.6357920169830322", "rev": "workspace" }, { "step": 72, "accuracy_train": "0.6401164531707764", "rev": "workspace" }, { "step": 73, "accuracy_train": "0.6443119049072266", "rev": "workspace" }, { "step": 74, "accuracy_train": "0.6484841704368591", "rev": "workspace" }, { "step": 75, "accuracy_train": "0.6524708867073059", "rev": "workspace" }, { "step": 76, "accuracy_train": "0.6563584208488464", "rev": "workspace" }, { "step": 77, "accuracy_train": "0.6601410508155823", "rev": "workspace" }, { "step": 78, "accuracy_train": "0.6638056635856628", "rev": "workspace" }, { "step": 79, "accuracy_train": "0.6673806309700012", "rev": "workspace" }, { "step": 80, "accuracy_train": "0.6708938479423523", "rev": "workspace" }, { "step": 81, "accuracy_train": "0.6743400692939758", "rev": "workspace" }, { "step": 82, "accuracy_train": "0.6775490641593933", "rev": "workspace" }, { "step": 83, "accuracy_train": "0.680792510509491", "rev": "workspace" }, { "step": 84, "accuracy_train": "0.6839669346809387", "rev": "workspace" }, { "step": 85, "accuracy_train": "0.6870697140693665", "rev": "workspace" }, { "step": 86, "accuracy_train": "0.6900910139083862", "rev": "workspace" }, { "step": 87, "accuracy_train": "0.693053662776947", "rev": "workspace" }, { "step": 88, "accuracy_train": "0.6959678530693054", "rev": "workspace" }, { "step": 89, "accuracy_train": "0.6988064646720886", "rev": "workspace" }, { "step": 90, "accuracy_train": "0.7015607357025146", "rev": "workspace" }, { "step": 91, "accuracy_train": "0.7042788863182068", "rev": "workspace" }, { "step": 92, "accuracy_train": "0.7069124579429626", "rev": "workspace" }, { "step": 93, "accuracy_train": "0.7095058560371399", "rev": "workspace" }, { "step": 94, "accuracy_train": "0.712057888507843", "rev": "workspace" }, { "step": 95, "accuracy_train": "0.7144908905029297", "rev": "workspace" }, { "step": 96, "accuracy_train": "0.7168821096420288", "rev": "workspace" }, { "step": 97, "accuracy_train": "0.7192414999008179", "rev": "workspace" }, { "step": 98, "accuracy_train": "0.7215766310691833", "rev": "workspace" }, { "step": 99, "accuracy_train": "0.7238864898681641", "rev": "workspace" }, { "step": 100, "accuracy_train": "0.7261072397232056", "rev": "workspace" }, { "step": 101, "accuracy_train": "0.7282916903495789", "rev": "workspace" }, { "step": 102, "accuracy_train": "0.7304773926734924", "rev": "workspace" }, { "step": 103, "accuracy_train": "0.7326055765151978", "rev": "workspace" }, { "step": 104, "accuracy_train": "0.7347046732902527", "rev": "workspace" }, { "step": 105, "accuracy_train": "0.7367346286773682", "rev": "workspace" }, { "step": 106, "accuracy_train": "0.7387702465057373", "rev": "workspace" }, { "step": 107, "accuracy_train": "0.7407589554786682", "rev": "workspace" }, { "step": 108, "accuracy_train": "0.7427427172660828", "rev": "workspace" }, { "step": 109, "accuracy_train": "0.7445874810218811", "rev": "workspace" }, { "step": 110, "accuracy_train": "0.7464470267295837", "rev": "workspace" }, { "step": 111, "accuracy_train": "0.748274028301239", "rev": "workspace" }, { "step": 112, "accuracy_train": "0.750049889087677", "rev": "workspace" }, { "step": 113, "accuracy_train": "0.7518092393875122", "rev": "workspace" }, { "step": 114, "accuracy_train": "0.753516435623169", "rev": "workspace" }, { "step": 115, "accuracy_train": "0.7552217245101929", "rev": "workspace" }, { "step": 116, "accuracy_train": "0.7568762302398682", "rev": "workspace" }, { "step": 117, "accuracy_train": "0.7585200071334839", "rev": "workspace" }, { "step": 118, "accuracy_train": "0.7601910829544067", "rev": "workspace" }, { "step": 119, "accuracy_train": "0.7616886496543884", "rev": "workspace" }, { "step": 120, "accuracy_train": "0.763236939907074", "rev": "workspace" }, { "step": 121, "accuracy_train": "0.7647789120674133", "rev": "workspace" }, { "step": 122, "accuracy_train": "0.766293466091156", "rev": "workspace" }, { "step": 123, "accuracy_train": "0.7678454518318176", "rev": "workspace" }, { "step": 124, "accuracy_train": "0.7693033218383789", "rev": "workspace" }, { "step": 125, "accuracy_train": "0.7707488536834717", "rev": "workspace" }, { "step": 126, "accuracy_train": "0.772094190120697", "rev": "workspace" }, { "step": 127, "accuracy_train": "0.7735177874565125", "rev": "workspace" }, { "step": 128, "accuracy_train": "0.7748700976371765", "rev": "workspace" }, { "step": 129, "accuracy_train": "0.776178240776062", "rev": "workspace" }, { "step": 130, "accuracy_train": "0.7775197625160217", "rev": "workspace" }, { "step": 131, "accuracy_train": "0.7787727117538452", "rev": "workspace" }, { "step": 132, "accuracy_train": "0.7800529599189758", "rev": "workspace" }, { "step": 133, "accuracy_train": "0.7812585234642029", "rev": "workspace" }, { "step": 134, "accuracy_train": "0.7824690937995911", "rev": "workspace" }, { "step": 135, "accuracy_train": "0.7836477160453796", "rev": "workspace" }, { "step": 136, "accuracy_train": "0.7849162220954895", "rev": "workspace" }, { "step": 137, "accuracy_train": "0.7861440181732178", "rev": "workspace" }, { "step": 138, "accuracy_train": "0.7873712778091431", "rev": "workspace" }, { "step": 139, "accuracy_train": "0.7885527014732361", "rev": "workspace" }, { "step": 140, "accuracy_train": "0.7897130250930786", "rev": "workspace" }, { "step": 141, "accuracy_train": "0.790870189666748", "rev": "workspace" }, { "step": 142, "accuracy_train": "0.7920458316802979", "rev": "workspace" }, { "step": 143, "accuracy_train": "0.7931103706359863", "rev": "workspace" }, { "step": 144, "accuracy_train": "0.7942361235618591", "rev": "workspace" }, { "step": 145, "accuracy_train": "0.7953284978866577", "rev": "workspace" }, { "step": 146, "accuracy_train": "0.7963480353355408", "rev": "workspace" }, { "step": 147, "accuracy_train": "0.7974063158035278", "rev": "workspace" }, { "step": 148, "accuracy_train": "0.798450231552124", "rev": "workspace" }, { "step": 149, "accuracy_train": "0.7994584441184998", "rev": "workspace" }, { "step": 150, "accuracy_train": "0.8004546761512756", "rev": "workspace" }, { "step": 151, "accuracy_train": "0.8013997077941895", "rev": "workspace" }, { "step": 152, "accuracy_train": "0.8024122714996338", "rev": "workspace" }, { "step": 153, "accuracy_train": "0.803358793258667", "rev": "workspace" }, { "step": 154, "accuracy_train": "0.8043005466461182", "rev": "workspace" }, { "step": 155, "accuracy_train": "0.8052694797515869", "rev": "workspace" }, { "step": 156, "accuracy_train": "0.806199848651886", "rev": "workspace" }, { "step": 157, "accuracy_train": "0.8070595264434814", "rev": "workspace" }, { "step": 158, "accuracy_train": "0.8079778552055359", "rev": "workspace" }, { "step": 159, "accuracy_train": "0.8088495135307312", "rev": "workspace" }, { "step": 160, "accuracy_train": "0.8097116947174072", "rev": "workspace" }, { "step": 161, "accuracy_train": "0.810590386390686", "rev": "workspace" }, { "step": 162, "accuracy_train": "0.8114262819290161", "rev": "workspace" }, { "step": 163, "accuracy_train": "0.8122937083244324", "rev": "workspace" }, { "step": 164, "accuracy_train": "0.8131471872329712", "rev": "workspace" }, { "step": 165, "accuracy_train": "0.8139777779579163", "rev": "workspace" }, { "step": 166, "accuracy_train": "0.8147744536399841", "rev": "workspace" }, { "step": 167, "accuracy_train": "0.8156265020370483", "rev": "workspace" }, { "step": 168, "accuracy_train": "0.8164225220680237", "rev": "workspace" }, { "step": 169, "accuracy_train": "0.8172279596328735", "rev": "workspace" }, { "step": 170, "accuracy_train": "0.8180204033851624", "rev": "workspace" }, { "step": 171, "accuracy_train": "0.8188337087631226", "rev": "workspace" }, { "step": 172, "accuracy_train": "0.8196122646331787", "rev": "workspace" }, { "step": 173, "accuracy_train": "0.8203689455986023", "rev": "workspace" }, { "step": 174, "accuracy_train": "0.8211503624916077", "rev": "workspace" }, { "step": 175, "accuracy_train": "0.821871817111969", "rev": "workspace" }, { "step": 176, "accuracy_train": "0.8225604295730591", "rev": "workspace" }, { "step": 177, "accuracy_train": "0.8232889771461487", "rev": "workspace" }, { "step": 178, "accuracy_train": "0.8240391612052917", "rev": "workspace" }, { "step": 179, "accuracy_train": "0.824738085269928", "rev": "workspace" }, { "step": 180, "accuracy_train": "0.8254061341285706", "rev": "workspace" }, { "step": 181, "accuracy_train": "0.8260559439659119", "rev": "workspace" }, { "step": 182, "accuracy_train": "0.8267054557800293", "rev": "workspace" }, { "step": 183, "accuracy_train": "0.8273881077766418", "rev": "workspace" }, { "step": 184, "accuracy_train": "0.8280845284461975", "rev": "workspace" }, { "step": 185, "accuracy_train": "0.828743040561676", "rev": "workspace" }, { "step": 186, "accuracy_train": "0.8294104933738708", "rev": "workspace" }, { "step": 187, "accuracy_train": "0.8300095200538635", "rev": "workspace" }, { "step": 188, "accuracy_train": "0.8306493163108826", "rev": "workspace" }, { "step": 189, "accuracy_train": "0.8312875628471375", "rev": "workspace" }, { "step": 190, "accuracy_train": "0.8319101333618164", "rev": "workspace" }, { "step": 191, "accuracy_train": "0.8325663208961487", "rev": "workspace" }, { "step": 192, "accuracy_train": "0.8332136869430542", "rev": "workspace" }, { "step": 193, "accuracy_train": "0.8338399529457092", "rev": "workspace" }, { "step": 194, "accuracy_train": "0.8344071507453918", "rev": "workspace" }, { "step": 195, "accuracy_train": "0.8350204229354858", "rev": "workspace" }, { "step": 196, "accuracy_train": "0.8356167078018188", "rev": "workspace" }, { "step": 197, "accuracy_train": "0.836176872253418", "rev": "workspace" }, { "step": 198, "accuracy_train": "0.8368045091629028", "rev": "workspace" }, { "step": 199, "accuracy_train": "0.8373478651046753", "rev": "workspace" }, { "step": 200, "accuracy_train": "0.837903618812561", "rev": "workspace" }, { "step": 201, "accuracy_train": "0.8384701609611511", "rev": "workspace" }, { "step": 202, "accuracy_train": "0.8390499353408813", "rev": "workspace" }, { "step": 203, "accuracy_train": "0.8396066427230835", "rev": "workspace" }, { "step": 204, "accuracy_train": "0.8401467204093933", "rev": "workspace" }, { "step": 205, "accuracy_train": "0.840649425983429", "rev": "workspace" }, { "step": 206, "accuracy_train": "0.8411962985992432", "rev": "workspace" }, { "step": 207, "accuracy_train": "0.8417292833328247", "rev": "workspace" }, { "step": 208, "accuracy_train": "0.8422626256942749", "rev": "workspace" }, { "step": 209, "accuracy_train": "0.8427655100822449", "rev": "workspace" }, { "step": 210, "accuracy_train": "0.843235969543457", "rev": "workspace" }, { "step": 211, "accuracy_train": "0.8437221646308899", "rev": "workspace" }, { "step": 212, "accuracy_train": "0.8441882729530334", "rev": "workspace" }, { "step": 213, "accuracy_train": "0.8446692228317261", "rev": "workspace" }, { "step": 214, "accuracy_train": "0.845182478427887", "rev": "workspace" }, { "step": 215, "accuracy_train": "0.8456679582595825", "rev": "workspace" }, { "step": 216, "accuracy_train": "0.8461502194404602", "rev": "workspace" }, { "step": 217, "accuracy_train": "0.8466311097145081", "rev": "workspace" }, { "step": 218, "accuracy_train": "0.8471159338951111", "rev": "workspace" }, { "step": 219, "accuracy_train": "0.8476173281669617", "rev": "workspace" }, { "step": 220, "accuracy_train": "0.8480663299560547", "rev": "workspace" }, { "step": 221, "accuracy_train": "0.8485521078109741", "rev": "workspace" }, { "step": 222, "accuracy_train": "0.8490065336227417", "rev": "workspace" }, { "step": 223, "accuracy_train": "0.84945148229599", "rev": "workspace" }, { "step": 224, "accuracy_train": "0.8499021530151367", "rev": "workspace" }, { "step": 225, "accuracy_train": "0.8503347039222717", "rev": "workspace" }, { "step": 226, "accuracy_train": "0.8507705926895142", "rev": "workspace" }, { "step": 227, "accuracy_train": "0.8512048125267029", "rev": "workspace" }, { "step": 228, "accuracy_train": "0.8516327142715454", "rev": "workspace" }, { "step": 229, "accuracy_train": "0.8520622849464417", "rev": "workspace" }, { "step": 230, "accuracy_train": "0.8524938821792603", "rev": "workspace" }, { "step": 231, "accuracy_train": "0.852929949760437", "rev": "workspace" }, { "step": 232, "accuracy_train": "0.8533341288566589", "rev": "workspace" }, { "step": 233, "accuracy_train": "0.8537390828132629", "rev": "workspace" }, { "step": 234, "accuracy_train": "0.8540988564491272", "rev": "workspace" }, { "step": 235, "accuracy_train": "0.8545152544975281", "rev": "workspace" }, { "step": 236, "accuracy_train": "0.8549187779426575", "rev": "workspace" }, { "step": 237, "accuracy_train": "0.8553181290626526", "rev": "workspace" }, { "step": 238, "accuracy_train": "0.855717122554779", "rev": "workspace" }, { "step": 239, "accuracy_train": "0.8561220765113831", "rev": "workspace" }, { "step": 240, "accuracy_train": "0.8564921021461487", "rev": "workspace" }, { "step": 241, "accuracy_train": "0.8568522930145264", "rev": "workspace" }, { "step": 242, "accuracy_train": "0.8572503924369812", "rev": "workspace" }, { "step": 243, "accuracy_train": "0.8576446771621704", "rev": "workspace" }, { "step": 244, "accuracy_train": "0.8580135703086853", "rev": "workspace" }, { "step": 245, "accuracy_train": "0.8583711981773376", "rev": "workspace" }, { "step": 246, "accuracy_train": "0.8587556481361389", "rev": "workspace" }, { "step": 247, "accuracy_train": "0.8591521978378296", "rev": "workspace" }, { "step": 248, "accuracy_train": "0.859534502029419", "rev": "workspace" }, { "step": 249, "accuracy_train": "0.859878659248352", "rev": "workspace" }, { "step": 250, "accuracy_train": "0.8602045178413391", "rev": "workspace" }, { "step": 251, "accuracy_train": "0.8605643510818481", "rev": "workspace" }, { "step": 252, "accuracy_train": "0.8609074354171753", "rev": "workspace" }, { "step": 253, "accuracy_train": "0.8612474799156189", "rev": "workspace" }, { "step": 254, "accuracy_train": "0.8616113662719727", "rev": "workspace" }, { "step": 255, "accuracy_train": "0.8619658946990967", "rev": "workspace" }, { "step": 256, "accuracy_train": "0.8622974753379822", "rev": "workspace" }, { "step": 257, "accuracy_train": "0.86265629529953", "rev": "workspace" }, { "step": 258, "accuracy_train": "0.8630151748657227", "rev": "workspace" }, { "step": 259, "accuracy_train": "0.8633338212966919", "rev": "workspace" }, { "step": 260, "accuracy_train": "0.8636519312858582", "rev": "workspace" }, { "step": 261, "accuracy_train": "0.8639867305755615", "rev": "workspace" }, { "step": 262, "accuracy_train": "0.8643000721931458", "rev": "workspace" }, { "step": 263, "accuracy_train": "0.8646564483642578", "rev": "workspace" }, { "step": 264, "accuracy_train": "0.8649749159812927", "rev": "workspace" }, { "step": 265, "accuracy_train": "0.8652567863464355", "rev": "workspace" }, { "step": 266, "accuracy_train": "0.8655537366867065", "rev": "workspace" }, { "step": 267, "accuracy_train": "0.8658890724182129", "rev": "workspace" }, { "step": 268, "accuracy_train": "0.8662153482437134", "rev": "workspace" }, { "step": 269, "accuracy_train": "0.8665201663970947", "rev": "workspace" }, { "step": 270, "accuracy_train": "0.8668607473373413", "rev": "workspace" }, { "step": 271, "accuracy_train": "0.8671742677688599", "rev": "workspace" }, { "step": 272, "accuracy_train": "0.8674926161766052", "rev": "workspace" }, { "step": 273, "accuracy_train": "0.8677963018417358", "rev": "workspace" }, { "step": 274, "accuracy_train": "0.8681104779243469", "rev": "workspace" }, { "step": 275, "accuracy_train": "0.8684048652648926", "rev": "workspace" }, { "step": 276, "accuracy_train": "0.8686904311180115", "rev": "workspace" }, { "step": 277, "accuracy_train": "0.8689703941345215", "rev": "workspace" }, { "step": 278, "accuracy_train": "0.8692751526832581", "rev": "workspace" }, { "step": 279, "accuracy_train": "0.869561493396759", "rev": "workspace" }, { "step": 280, "accuracy_train": "0.8698569536209106", "rev": "workspace" }, { "step": 281, "accuracy_train": "0.8701409101486206", "rev": "workspace" }, { "step": 282, "accuracy_train": "0.870430052280426", "rev": "workspace" }, { "step": 283, "accuracy_train": "0.87070631980896", "rev": "workspace" }, { "step": 284, "accuracy_train": "0.8709831237792969", "rev": "workspace" }, { "step": 285, "accuracy_train": "0.871252179145813", "rev": "workspace" }, { "step": 286, "accuracy_train": "0.8715106248855591", "rev": "workspace" }, { "step": 287, "accuracy_train": "0.8717894554138184", "rev": "workspace" }, { "step": 288, "accuracy_train": "0.8720710873603821", "rev": "workspace" }, { "step": 289, "accuracy_train": "0.8723511099815369", "rev": "workspace" }, { "step": 290, "accuracy_train": "0.8726474046707153", "rev": "workspace" }, { "step": 291, "accuracy_train": "0.8729016780853271", "rev": "workspace" }, { "step": 292, "accuracy_train": "0.8731608390808105", "rev": "workspace" }, { "step": 293, "accuracy_train": "0.8734003305435181", "rev": "workspace" }, { "step": 294, "accuracy_train": "0.8736701607704163", "rev": "workspace" }, { "step": 295, "accuracy_train": "0.873936653137207", "rev": "workspace" }, { "step": 296, "accuracy_train": "0.8741785883903503", "rev": "workspace" }, { "step": 297, "accuracy_train": "0.8744345307350159", "rev": "workspace" }, { "step": 298, "accuracy_train": "0.8746727705001831", "rev": "workspace" }, { "step": 299, "accuracy_train": "0.874925434589386", "rev": "workspace" }, { "step": 300, "accuracy_train": "0.875191330909729", "rev": "workspace" }, { "step": 301, "accuracy_train": "0.8754462599754333", "rev": "workspace" }, { "step": 302, "accuracy_train": "0.8756964802742004", "rev": "workspace" }, { "step": 303, "accuracy_train": "0.8759343028068542", "rev": "workspace" }, { "step": 304, "accuracy_train": "0.8761361837387085", "rev": "workspace" }, { "step": 305, "accuracy_train": "0.8763467669487", "rev": "workspace" }, { "step": 306, "accuracy_train": "0.8765941858291626", "rev": "workspace" }, { "step": 307, "accuracy_train": "0.8768274784088135", "rev": "workspace" }, { "step": 308, "accuracy_train": "0.8770738840103149", "rev": "workspace" }, { "step": 309, "accuracy_train": "0.8772940635681152", "rev": "workspace" }, { "step": 310, "accuracy_train": "0.877560555934906", "rev": "workspace" }, { "step": 311, "accuracy_train": "0.8778050541877747", "rev": "workspace" }, { "step": 312, "accuracy_train": "0.8780496120452881", "rev": "workspace" }, { "step": 313, "accuracy_train": "0.8782621622085571", "rev": "workspace" }, { "step": 314, "accuracy_train": "0.8784927725791931", "rev": "workspace" }, { "step": 315, "accuracy_train": "0.8787156343460083", "rev": "workspace" }, { "step": 316, "accuracy_train": "0.8789414763450623", "rev": "workspace" }, { "step": 317, "accuracy_train": "0.8791552782058716", "rev": "workspace" }, { "step": 318, "accuracy_train": "0.8793788552284241", "rev": "workspace" }, { "step": 319, "accuracy_train": "0.8796210289001465", "rev": "workspace" }, { "step": 320, "accuracy_train": "0.8798565864562988", "rev": "workspace" }, { "step": 321, "accuracy_train": "0.8800683617591858", "rev": "workspace" }, { "step": 322, "accuracy_train": "0.8802956938743591", "rev": "workspace" }, { "step": 323, "accuracy_train": "0.8805084228515625", "rev": "workspace" }, { "step": 324, "accuracy_train": "0.8807024955749512", "rev": "workspace" }, { "step": 325, "accuracy_train": "0.8809196352958679", "rev": "workspace" }, { "step": 326, "accuracy_train": "0.8811274170875549", "rev": "workspace" }, { "step": 327, "accuracy_train": "0.8813344240188599", "rev": "workspace" }, { "step": 328, "accuracy_train": "0.8815332651138306", "rev": "workspace" }, { "step": 329, "accuracy_train": "0.8817335367202759", "rev": "workspace" }, { "step": 330, "accuracy_train": "0.8819234371185303", "rev": "workspace" }, { "step": 331, "accuracy_train": "0.8820932507514954", "rev": "workspace" }, { "step": 332, "accuracy_train": "0.8823164105415344", "rev": "workspace" }, { "step": 333, "accuracy_train": "0.8825197219848633", "rev": "workspace" }, { "step": 334, "accuracy_train": "0.8827186822891235", "rev": "workspace" }, { "step": 335, "accuracy_train": "0.8829184174537659", "rev": "workspace" }, { "step": 336, "accuracy_train": "0.8831091523170471", "rev": "workspace" }, { "step": 337, "accuracy_train": "0.8833090662956238", "rev": "workspace" }, { "step": 338, "accuracy_train": "0.8835080862045288", "rev": "workspace" }, { "step": 339, "accuracy_train": "0.8837069272994995", "rev": "workspace" }, { "step": 340, "accuracy_train": "0.883889377117157", "rev": "workspace" }, { "step": 341, "accuracy_train": "0.8840998411178589", "rev": "workspace" }, { "step": 342, "accuracy_train": "0.8843069672584534", "rev": "workspace" }, { "step": 343, "accuracy_train": "0.884513795375824", "rev": "workspace" }, { "step": 344, "accuracy_train": "0.884695291519165", "rev": "workspace" }, { "step": 345, "accuracy_train": "0.8848926424980164", "rev": "workspace" }, { "step": 346, "accuracy_train": "0.8850750923156738", "rev": "workspace" }, { "step": 347, "accuracy_train": "0.8852613568305969", "rev": "workspace" }, { "step": 348, "accuracy_train": "0.8854422569274902", "rev": "workspace" }, { "step": 349, "accuracy_train": "0.8856532573699951", "rev": "workspace" }, { "step": 350, "accuracy_train": "0.8858168125152588", "rev": "workspace" }, { "step": 351, "accuracy_train": "0.8860132098197937", "rev": "workspace" }, { "step": 352, "accuracy_train": "0.8862019181251526", "rev": "workspace" }, { "step": 353, "accuracy_train": "0.8864020109176636", "rev": "workspace" }, { "step": 354, "accuracy_train": "0.8865509629249573", "rev": "workspace" }, { "step": 355, "accuracy_train": "0.8867299556732178", "rev": "workspace" }, { "step": 356, "accuracy_train": "0.8868951797485352", "rev": "workspace" }, { "step": 357, "accuracy_train": "0.8870682716369629", "rev": "workspace" }, { "step": 358, "accuracy_train": "0.8872540593147278", "rev": "workspace" }, { "step": 359, "accuracy_train": "0.8874168992042542", "rev": "workspace" }, { "step": 360, "accuracy_train": "0.8875876069068909", "rev": "workspace" }, { "step": 361, "accuracy_train": "0.8877578377723694", "rev": "workspace" }, { "step": 362, "accuracy_train": "0.8879192471504211", "rev": "workspace" }, { "step": 363, "accuracy_train": "0.8880944848060608", "rev": "workspace" }, { "step": 364, "accuracy_train": "0.8882755041122437", "rev": "workspace" }, { "step": 365, "accuracy_train": "0.8884318470954895", "rev": "workspace" }, { "step": 366, "accuracy_train": "0.8886064887046814", "rev": "workspace" }, { "step": 367, "accuracy_train": "0.8887869715690613", "rev": "workspace" }, { "step": 368, "accuracy_train": "0.8889593482017517", "rev": "workspace" }, { "step": 369, "accuracy_train": "0.8891066312789917", "rev": "workspace" }, { "step": 370, "accuracy_train": "0.8892788290977478", "rev": "workspace" }, { "step": 371, "accuracy_train": "0.8894485831260681", "rev": "workspace" }, { "step": 372, "accuracy_train": "0.8896145820617676", "rev": "workspace" }, { "step": 373, "accuracy_train": "0.8897762298583984", "rev": "workspace" }, { "step": 374, "accuracy_train": "0.8899331092834473", "rev": "workspace" }, { "step": 375, "accuracy_train": "0.8900969624519348", "rev": "workspace" }, { "step": 376, "accuracy_train": "0.8902655243873596", "rev": "workspace" }, { "step": 377, "accuracy_train": "0.8904131650924683", "rev": "workspace" }, { "step": 378, "accuracy_train": "0.8906078338623047", "rev": "workspace" }, { "step": 379, "accuracy_train": "0.8907554745674133", "rev": "workspace" }, { "step": 380, "accuracy_train": "0.8909083604812622", "rev": "workspace" }, { "step": 381, "accuracy_train": "0.8910605311393738", "rev": "workspace" }, { "step": 382, "accuracy_train": "0.891206681728363", "rev": "workspace" }, { "step": 383, "accuracy_train": "0.8913586139678955", "rev": "workspace" }, { "step": 384, "accuracy_train": "0.8915366530418396", "rev": "workspace" }, { "step": 385, "accuracy_train": "0.8917087912559509", "rev": "workspace" }, { "step": 386, "accuracy_train": "0.8918344974517822", "rev": "workspace" }, { "step": 387, "accuracy_train": "0.8919764161109924", "rev": "workspace" }, { "step": 388, "accuracy_train": "0.8921183943748474", "rev": "workspace" }, { "step": 389, "accuracy_train": "0.8922802805900574", "rev": "workspace" }, { "step": 390, "accuracy_train": "0.8924030065536499", "rev": "workspace" }, { "step": 391, "accuracy_train": "0.8925492167472839", "rev": "workspace" }, { "step": 392, "accuracy_train": "0.8926982283592224", "rev": "workspace" }, { "step": 393, "accuracy_train": "0.8928534984588623", "rev": "workspace" }, { "step": 394, "accuracy_train": "0.8930209875106812", "rev": "workspace" }, { "step": 395, "accuracy_train": "0.8931626081466675", "rev": "workspace" }, { "step": 396, "accuracy_train": "0.8933201432228088", "rev": "workspace" }, { "step": 397, "accuracy_train": "0.8934561610221863", "rev": "workspace" }, { "step": 398, "accuracy_train": "0.8935997486114502", "rev": "workspace" }, { "step": 399, "accuracy_train": "0.8937476873397827", "rev": "workspace" }, { "step": 400, "accuracy_train": "0.893896758556366", "rev": "workspace" }, { "step": 401, "accuracy_train": "0.8940339088439941", "rev": "workspace" }, { "step": 402, "accuracy_train": "0.894163966178894", "rev": "workspace" }, { "step": 403, "accuracy_train": "0.894299328327179", "rev": "workspace" }, { "step": 404, "accuracy_train": "0.8944453597068787", "rev": "workspace" }, { "step": 405, "accuracy_train": "0.8945977091789246", "rev": "workspace" }, { "step": 406, "accuracy_train": "0.8947334289550781", "rev": "workspace" }, { "step": 407, "accuracy_train": "0.8948788642883301", "rev": "workspace" }, { "step": 408, "accuracy_train": "0.8950198292732239", "rev": "workspace" }, { "step": 409, "accuracy_train": "0.8951461315155029", "rev": "workspace" }, { "step": 410, "accuracy_train": "0.8952866196632385", "rev": "workspace" }, { "step": 411, "accuracy_train": "0.8954126238822937", "rev": "workspace" }, { "step": 412, "accuracy_train": "0.895540177822113", "rev": "workspace" }, { "step": 413, "accuracy_train": "0.8956541419029236", "rev": "workspace" }, { "step": 414, "accuracy_train": "0.8957872986793518", "rev": "workspace" }, { "step": 415, "accuracy_train": "0.8959180116653442", "rev": "workspace" }, { "step": 416, "accuracy_train": "0.8960731625556946", "rev": "workspace" }, { "step": 417, "accuracy_train": "0.8962169885635376", "rev": "workspace" }, { "step": 418, "accuracy_train": "0.8963183760643005", "rev": "workspace" }, { "step": 419, "accuracy_train": "0.8964520692825317", "rev": "workspace" }, { "step": 420, "accuracy_train": "0.8965981602668762", "rev": "workspace" }, { "step": 421, "accuracy_train": "0.8967142701148987", "rev": "workspace" }, { "step": 422, "accuracy_train": "0.8968445062637329", "rev": "workspace" }, { "step": 423, "accuracy_train": "0.8969739079475403", "rev": "workspace" }, { "step": 424, "accuracy_train": "0.8970954418182373", "rev": "workspace" }, { "step": 425, "accuracy_train": "0.897201657295227", "rev": "workspace" }, { "step": 426, "accuracy_train": "0.8973084688186646", "rev": "workspace" }, { "step": 427, "accuracy_train": "0.8974169492721558", "rev": "workspace" }, { "step": 428, "accuracy_train": "0.8975465893745422", "rev": "workspace" }, { "step": 429, "accuracy_train": "0.8976767063140869", "rev": "workspace" }, { "step": 430, "accuracy_train": "0.8977949023246765", "rev": "workspace" }, { "step": 431, "accuracy_train": "0.8978936672210693", "rev": "workspace" }, { "step": 432, "accuracy_train": "0.8980184197425842", "rev": "workspace" }, { "step": 433, "accuracy_train": "0.8981432318687439", "rev": "workspace" }, { "step": 434, "accuracy_train": "0.8982611298561096", "rev": "workspace" }, { "step": 435, "accuracy_train": "0.898389458656311", "rev": "workspace" }, { "step": 436, "accuracy_train": "0.8984837532043457", "rev": "workspace" }, { "step": 437, "accuracy_train": "0.8986079096794128", "rev": "workspace" }, { "step": 438, "accuracy_train": "0.8987410068511963", "rev": "workspace" }, { "step": 439, "accuracy_train": "0.8988686800003052", "rev": "workspace" }, { "step": 440, "accuracy_train": "0.899001955986023", "rev": "workspace" }, { "step": 441, "accuracy_train": "0.8990991115570068", "rev": "workspace" }, { "step": 442, "accuracy_train": "0.8992312550544739", "rev": "workspace" }, { "step": 443, "accuracy_train": "0.8993203639984131", "rev": "workspace" }, { "step": 444, "accuracy_train": "0.8994459509849548", "rev": "workspace" }, { "step": 445, "accuracy_train": "0.8995696902275085", "rev": "workspace" }, { "step": 446, "accuracy_train": "0.8996679782867432", "rev": "workspace" }, { "step": 447, "accuracy_train": "0.8997864723205566", "rev": "workspace" }, { "step": 448, "accuracy_train": "0.8999154567718506", "rev": "workspace" }, { "step": 449, "accuracy_train": "0.9000263810157776", "rev": "workspace" }, { "step": 450, "accuracy_train": "0.9001625180244446", "rev": "workspace" }, { "step": 451, "accuracy_train": "0.9002816081047058", "rev": "workspace" }, { "step": 452, "accuracy_train": "0.9003954529762268", "rev": "workspace" }, { "step": 453, "accuracy_train": "0.9005227088928223", "rev": "workspace" }, { "step": 454, "accuracy_train": "0.9006240963935852", "rev": "workspace" }, { "step": 455, "accuracy_train": "0.900739848613739", "rev": "workspace" }, { "step": 456, "accuracy_train": "0.9008573889732361", "rev": "workspace" }, { "step": 457, "accuracy_train": "0.9009661078453064", "rev": "workspace" }, { "step": 458, "accuracy_train": "0.9010756611824036", "rev": "workspace" }, { "step": 459, "accuracy_train": "0.9011884331703186", "rev": "workspace" }, { "step": 460, "accuracy_train": "0.9012945890426636", "rev": "workspace" }, { "step": 461, "accuracy_train": "0.9014188647270203", "rev": "workspace" }, { "step": 462, "accuracy_train": "0.901513934135437", "rev": "workspace" }, { "step": 463, "accuracy_train": "0.9016255140304565", "rev": "workspace" }, { "step": 464, "accuracy_train": "0.9017335176467896", "rev": "workspace" }, { "step": 465, "accuracy_train": "0.9018502235412598", "rev": "workspace" }, { "step": 466, "accuracy_train": "0.9019555449485779", "rev": "workspace" }, { "step": 467, "accuracy_train": "0.9020495414733887", "rev": "workspace" }, { "step": 468, "accuracy_train": "0.9021489024162292", "rev": "workspace" }, { "step": 469, "accuracy_train": "0.9022411704063416", "rev": "workspace" }, { "step": 470, "accuracy_train": "0.9023576378822327", "rev": "workspace" }, { "step": 471, "accuracy_train": "0.9024544954299927", "rev": "workspace" }, { "step": 472, "accuracy_train": "0.9025619029998779", "rev": "workspace" }, { "step": 473, "accuracy_train": "0.9026703834533691", "rev": "workspace" }, { "step": 474, "accuracy_train": "0.9027665257453918", "rev": "workspace" }, { "step": 475, "accuracy_train": "0.9028506278991699", "rev": "workspace" }, { "step": 476, "accuracy_train": "0.9029461145401001", "rev": "workspace" }, { "step": 477, "accuracy_train": "0.9030681848526001", "rev": "workspace" }, { "step": 478, "accuracy_train": "0.9031630754470825", "rev": "workspace" }, { "step": 479, "accuracy_train": "0.9032744765281677", "rev": "workspace" }, { "step": 480, "accuracy_train": "0.9033788442611694", "rev": "workspace" }, { "step": 481, "accuracy_train": "0.9034688472747803", "rev": "workspace" }, { "step": 482, "accuracy_train": "0.9035699963569641", "rev": "workspace" }, { "step": 483, "accuracy_train": "0.903671145439148", "rev": "workspace" }, { "step": 484, "accuracy_train": "0.903768002986908", "rev": "workspace" }, { "step": 485, "accuracy_train": "0.9038483500480652", "rev": "workspace" }, { "step": 486, "accuracy_train": "0.9039249420166016", "rev": "workspace" }, { "step": 487, "accuracy_train": "0.9040051102638245", "rev": "workspace" }, { "step": 488, "accuracy_train": "0.9040824770927429", "rev": "workspace" }, { "step": 489, "accuracy_train": "0.9041761159896851", "rev": "workspace" }, { "step": 490, "accuracy_train": "0.9042761325836182", "rev": "workspace" }, { "step": 491, "accuracy_train": "0.9043554067611694", "rev": "workspace" }, { "step": 492, "accuracy_train": "0.9044468402862549", "rev": "workspace" }, { "step": 493, "accuracy_train": "0.9045285582542419", "rev": "workspace" }, { "step": 494, "accuracy_train": "0.9046306014060974", "rev": "workspace" }, { "step": 495, "accuracy_train": "0.9047051668167114", "rev": "workspace" }, { "step": 496, "accuracy_train": "0.9047912955284119", "rev": "workspace" }, { "step": 497, "accuracy_train": "0.9048776030540466", "rev": "workspace" }, { "step": 498, "accuracy_train": "0.9049597978591919", "rev": "workspace" }, { "step": 499, "accuracy_train": "0.9050392508506775", "rev": "workspace" }, { "step": 500, "accuracy_train": "0.9051318168640137", "rev": "workspace" }, { "step": 501, "accuracy_train": "0.9052268862724304", "rev": "workspace" }, { "step": 502, "accuracy_train": "0.9053148627281189", "rev": "workspace" }, { "step": 503, "accuracy_train": "0.9053894281387329", "rev": "workspace" }, { "step": 504, "accuracy_train": "0.9054840803146362", "rev": "workspace" }, { "step": 505, "accuracy_train": "0.905570387840271", "rev": "workspace" }, { "step": 506, "accuracy_train": "0.90565025806427", "rev": "workspace" }, { "step": 507, "accuracy_train": "0.905748188495636", "rev": "workspace" }, { "step": 508, "accuracy_train": "0.9058336615562439", "rev": "workspace" }, { "step": 509, "accuracy_train": "0.9059144854545593", "rev": "workspace" }, { "step": 510, "accuracy_train": "0.9060183763504028", "rev": "workspace" }, { "step": 511, "accuracy_train": "0.9060907363891602", "rev": "workspace" }, { "step": 512, "accuracy_train": "0.9061748385429382", "rev": "workspace" }, { "step": 513, "accuracy_train": "0.9062524437904358", "rev": "workspace" }, { "step": 514, "accuracy_train": "0.9063463807106018", "rev": "workspace" }, { "step": 515, "accuracy_train": "0.9064182043075562", "rev": "workspace" }, { "step": 516, "accuracy_train": "0.9065081477165222", "rev": "workspace" }, { "step": 517, "accuracy_train": "0.9065848588943481", "rev": "workspace" }, { "step": 518, "accuracy_train": "0.9066889882087708", "rev": "workspace" }, { "step": 519, "accuracy_train": "0.9067877531051636", "rev": "workspace" }, { "step": 520, "accuracy_train": "0.9068773984909058", "rev": "workspace" }, { "step": 521, "accuracy_train": "0.9069644212722778", "rev": "workspace" }, { "step": 522, "accuracy_train": "0.9070423245429993", "rev": "workspace" }, { "step": 523, "accuracy_train": "0.907119870185852", "rev": "workspace" }, { "step": 524, "accuracy_train": "0.9071998000144958", "rev": "workspace" }, { "step": 525, "accuracy_train": "0.9072876572608948", "rev": "workspace" }, { "step": 526, "accuracy_train": "0.9073767066001892", "rev": "workspace" }, { "step": 527, "accuracy_train": "0.9074490666389465", "rev": "workspace" }, { "step": 528, "accuracy_train": "0.9075396656990051", "rev": "workspace" }, { "step": 529, "accuracy_train": "0.9076550602912903", "rev": "workspace" }, { "step": 530, "accuracy_train": "0.9077461361885071", "rev": "workspace" }, { "step": 531, "accuracy_train": "0.9078185558319092", "rev": "workspace" }, { "step": 532, "accuracy_train": "0.9079150557518005", "rev": "workspace" }, { "step": 533, "accuracy_train": "0.9080250859260559", "rev": "workspace" }, { "step": 534, "accuracy_train": "0.9081424474716187", "rev": "workspace" }, { "step": 535, "accuracy_train": "0.9082441926002502", "rev": "workspace" }, { "step": 536, "accuracy_train": "0.908315896987915", "rev": "workspace" }, { "step": 537, "accuracy_train": "0.908398449420929", "rev": "workspace" }, { "step": 538, "accuracy_train": "0.9084716439247131", "rev": "workspace" }, { "step": 539, "accuracy_train": "0.908576250076294", "rev": "workspace" }, { "step": 540, "accuracy_train": "0.9086793065071106", "rev": "workspace" }, { "step": 541, "accuracy_train": "0.908767580986023", "rev": "workspace" }, { "step": 542, "accuracy_train": "0.9088386297225952", "rev": "workspace" }, { "step": 543, "accuracy_train": "0.9089210033416748", "rev": "workspace" }, { "step": 544, "accuracy_train": "0.9090154767036438", "rev": "workspace" }, { "step": 545, "accuracy_train": "0.9091333150863647", "rev": "workspace" }, { "step": 546, "accuracy_train": "0.9092565178871155", "rev": "workspace" }, { "step": 547, "accuracy_train": "0.9093694686889648", "rev": "workspace" }, { "step": 548, "accuracy_train": "0.9094796776771545", "rev": "workspace" }, { "step": 549, "accuracy_train": "0.909554123878479", "rev": "workspace" }, { "step": 550, "accuracy_train": "0.9096507430076599", "rev": "workspace" }, { "step": 551, "accuracy_train": "0.9097588062286377", "rev": "workspace" }, { "step": 552, "accuracy_train": "0.909877598285675", "rev": "workspace" }, { "step": 553, "accuracy_train": "0.9099975824356079", "rev": "workspace" }, { "step": 554, "accuracy_train": "0.9101203680038452", "rev": "workspace" }, { "step": 555, "accuracy_train": "0.9102339148521423", "rev": "workspace" }, { "step": 556, "accuracy_train": "0.9103469848632812", "rev": "workspace" }, { "step": 557, "accuracy_train": "0.910458505153656", "rev": "workspace" }, { "step": 558, "accuracy_train": "0.9105759263038635", "rev": "workspace" }, { "step": 559, "accuracy_train": "0.9106745719909668", "rev": "workspace" } ] }, "title": "dvclive/plots/metrics/accuracy_train.tsv", "width": 300, "height": 300, "params": [ { "name": "smooth", "value": 0.001, "bind": { "input": "range", "min": 0.001, "max": 1, "step": 0.001 } } ], "layer": [ { "mark": "line", "encoding": { "x": { "field": "step", "type": "quantitative", "title": "step" }, "y": { "field": "accuracy_train", "type": "quantitative", "title": "accuracy_train", "scale": { "zero": false } }, "color": { "field": "rev", "type": "nominal" } }, "transform": [ { "loess": "accuracy_train", "on": "step", "groupby": ["rev", "filename", "field", "filename::field"], "bandwidth": { "signal": "smooth" } } ] }, { "mark": { "type": "point", "tooltip": { "content": "data" } }, "encoding": { "x": { "field": "step", "type": "quantitative", "title": "step" }, "y": { "field": "accuracy_train", "type": "quantitative", "title": "accuracy_train", "scale": { "zero": false } }, "color": { "field": "rev", "type": "nominal" } } } ] } ```
shcheklein commented 1 year ago

I think we need this https://github.com/vega/vega/pull/3686 (+change the way we show lines a bit). + use window transform on top of the exponential avg https://stackoverflow.com/questions/55996589/how-to-layer-a-moving-average-on-line-chart-with-vega-lite

SoyGema commented 1 year ago

This seems solved . Therefore closing it

shcheklein commented 1 year ago

@SoyGema hey, we've improved it, but it's not solved yet :( we need to fix the way smooth actually works via https://github.com/vega/vega/pull/3686

SoyGema commented 1 year ago

Hey, My apologies. Saw a Merged that looked good. :) keep it up! Please, consider in the future a policy -the label is a great idea! thanks for adding it - to understand bug-reporting / issue impact / scope from the contributor perspective. :) Seems that the ownership/responsibility of the issue goes to Iterative team from the start, therefore I might not follow along with actions . Let me know if this hypothesis is correct.

Thanks ! Have a nice day!

dberenbaum commented 1 year ago

Opened https://github.com/iterative/dvc-render/issues/135 since I don't think there's much VS Code can do.

Since we are waiting on https://github.com/vega/vega/pull/3686 and it doesn't appear to be moving right now, is it worth considering other options?

The quickest fix is to move to a simple (non-exponential) moving average, which is similar to what we want except for having an unweighted, fixed window. Here's how it looks in comparison to the current smoothing (old smoothing shown by smooth; new moving average shown by rolling_window):

https://github.com/iterative/vscode-dvc/assets/2308172/27778517-e215-4025-a954-9d407eebd81b

Vega editor

We could also consider starting to move towards plotly (see https://github.com/iterative/dvc-render/issues/7). It already has triangular moving average, which is probably close enough to exponential moving average.

dberenbaum commented 1 year ago

Also note that the tensorboard example @SoyGema also looks off to me. In the last row with the max smoothing parameter, the smoothed line looks way below the actual trend of the points:

image

sroy3 commented 1 year ago

This still hasn't propagated to Vega Lite and is blocked.

shcheklein commented 1 year ago

I think it's on us to propagate it. It seemed more or less straightforward the last time I checked and the vega-light is moving faster. Let's take a look please.

sroy3 commented 1 year ago

I think it's on us to propagate it. It seemed more or less straightforward the last time I checked and the vega-light is moving faster. Let's take a look please.

In that case, I don't think I'm the person for that job as I am quite lost in all this. I would not know if I'm doing the right thing or not. I'll unassign myself.