ixxmu / mp_duty

抓取网络文章到github issues保存
https://archives.duty-machine.now.sh/
122 stars 30 forks source link

多测试几个数据集生存效应应该是可以找到统计学显著的! #1792

Closed ixxmu closed 2 years ago

ixxmu commented 2 years ago

https://mp.weixin.qq.com/s/53iPbfm5ubKkqQmm1j9tOg

github-actions[bot] commented 2 years ago

多测试几个数据集生存效应应该是可以找到统计学显著的! by 生信技能树


前言

年前我提出了一个问题:为什么不用TCGA数据库来看感兴趣基因的生存情况
就是一篇文章并没有使用TCGA数据库的指定癌症的生存信息去看自己感兴趣的基因的生存效应,反而舍近求远去下载BMC Cancer. 2011 文章数据,所以我怀疑TCGA应该是该基因在该癌症里面的生存效果不显著!
所以就安排学徒来完成,下面是他的表演:

1.从UCSC Xena下载TCGA BRCA的表达矩阵HiSeqV2.gz,临床信息BRCA_clinicalMatrix,生存信息BRCA_survival.txt.gz,读入R。。


rm(list=ls())
options(stringsAsFactors = F)
options(warn = -1)

library(data.table)
##读入TCGA_BRCA表达信息
exprSet <- fread("HiSeqV2.gz",header = T,sep = '\t')
exprSet <- as.data.frame(exprSet)
rownames(exprSet) <- exprSet[,1]
exprSet <- exprSet[,-1]
## 从exprSet中提取PTP4A3的表达情况
dat <- exprSet["PTP4A3",]

##读入TCGA_BRCA生存信息
surdata <- read.table("BRCA_survival.txt.gz",header = T,sep = '\t')
rownames(surdata) <- surdata$sample
surdata <- surdata[,-1]

##读入TCGA_BRCA临床信息
pheno <- read.table("BRCA_clinicalMatrix",header = T,sep = '\t')
rownames(pheno) <- pheno$sampleID
pheno <- pheno[,-1]
如果你不知道如何下载TCGA数据库,可以看我以前的教程,我挑选了部分,写了6个数据下载系列教程


2.数据清洗

1)病人数据去重

table(duplicated(surdata$X_PATIENT))
#FALSE  TRUE 
# 1097   139 
choose_samples <- rownames(surdata[!duplicated(surdata$X_PATIENT),])
choose_samples[1:3]
length(choose_samples)
surdata <- surdata[choose_samples,]
pheno <- pheno[choose_samples,]
dat <- dat[,(colnames(dat) %in% choose_samples)]

choose_samples <- colnames(dat)
surdata <- surdata[choose_samples,]
pheno <- pheno[choose_samples,]
dat <- dat[,(colnames(dat) %in% choose_samples)]

2)选择Primary Tumor样本

pheno[1:3,1:3]
table(pheno$sample_type)
#         Metastatic       Primary Tumor Solid Tissue Normal 
#                 7                1086                   2
choose_samples <- rownames(pheno[pheno$sample_type=='Primary Tumor',])
surdata <- surdata[choose_samples,]
pheno <- pheno[choose_samples,]
dat <- dat[,(colnames(dat) %in% choose_samples)]

3.生存分析

参考:【生信技能树】TCGA的28篇教程- 对TCGA数据库的任意癌症中任意基因做生存分析

dat_bak <- dat
dat <- t(dat)
dat <- as.data.frame(dat)
dat$sampleID <- rownames(dat)
surdata$sampleID <- rownames(surdata)
surdata <- merge(surdata,dat,by='sampleID')
surdata$PTP4A3 <- as.numeric(surdata$PTP4A3)
surdata$g <- ifelse(surdata$PTP4A3 > median(surdata$PTP4A3),'high','low')
table(surdata$g)
#high  low 
# 543  543 

library(survival)
table(surdata$OS)
#  0   1 
#939 147
table(surdata$OS.time>0)
#FALSE  TRUE 
#  13  1072 
my.surv <- Surv(surdata$OS.time,surdata$OS==1)
kmfit2 <- survfit(my.surv~surdata$g,data = surdata) 
library("survminer")
ggsurvplot(kmfit2,conf.int =F, pval = T,risk.table =F, ncensor.plot = F)

p=0.91,结果不显著。按照文献里写的用三阴性乳腺癌样本分析。

参考:TCGA数据库中三阴性乳腺癌在亚洲人群中的差异表达

colnames_num_tnbc <- grep('receptor_status',colnames(pheno))
colnames(pheno)[colnames_num_tnbc]
eph <- pheno[,colnames_num_tnbc[1:3]]
eph$tnbc_row_num <- apply(eph, 1function(x) sum(x =='Negative')) ## 均为阴性的为三阴性乳腺癌
tnbc_samples <- rownames(pheno)[eph$tnbc_row_num == 3]
length(tnbc_samples)
#[1] 115 ##TCGA中tnbc病人只有115个

tnbc_surdata <- surdata[surdata$sampleID %in% tnbc_samples,]
tnbc.surv <- Surv(tnbc_surdata$OS.time,tnbc_surdata$OS==1)
tnbc.kmfit <- survfit(tnbc.surv~tnbc_surdata$g,data=tnbc_surdata)
ggsurvplot(tnbc.kmfit,conf.int = F,pval = T)

p=0.47。还是不显著,参考公众号【生信技能树】文章《生存分析就是一个任人打扮的小姑凉》继续折腾。
主要就是使用survminer包surv_cutpoint函数找基因表达量的分组阈值,根据这个阈值把基因分为highlow两组,而不是按照前面的median(surdata$PTP4A3)分组。

surv.cut <- surv_cutpoint(
  surdata,
  time = "OS.time",
  event = "OS",
  variables = "PTP4A3"
)
summary(surv.cut)
plot(surv.cut, "PTP4A3", palette = "npg")

surv.cat <- surv_categorize(surv.cut)

surv.fit <- survfit(Surv(OS.time, OS) ~ PTP4A3,
               data = surv.cat)
ggsurvplot(
  surv.fit,                     # survfit object with calculated statistics.
  risk.table = TRUE,       # show risk table.
  pval = TRUE,             # show p-value of log-rank test.
  conf.int = TRUE,         # show confidence intervals for 
  # point estimaes of survival curves.
  #xlim = c(0,3000),        # present narrower X axis, but not affect
  # survival estimates.
  break.time.by = 1000,    # break X axis in time intervals by 500. 
  risk.table.y.text.col = T# colour risk table text annotations.
  risk.table.y.text = FALSE # show bars instead of names in text annotations
  # in legend of risk table
)

p=0.01!!!
再来分析一遍三阴性乳腺癌样本。

tnbc.surv.cut <- surv_cutpoint(
  tnbc_surdata,
  time = "OS.time",
  event = "OS",
  variables = "PTP4A3"
)
summary(tnbc.surv.cut)
plot(tnbc.surv.cut, "PTP4A3", palette = "npg")

tnbc.surv.cat <- surv_categorize(tnbc.surv.cut)

tnbc.surv.fit <- survfit(Surv(OS.time, OS) ~ PTP4A3,
                    data = tnbc.surv.cat)
ggsurvplot(
  tnbc.surv.fit,                     # survfit object with calculated statistics.
  risk.table = TRUE,       # show risk table.
  pval = TRUE,             # show p-value of log-rank test.
  conf.int = TRUE,         # show confidence intervals for 
  # point estimaes of survival curves.
  # xlim = c(0,3000),        # present narrower X axis, but not affect
  # survival estimates.
  break.time.by = 1000,    # break X axis in time intervals by 500. 
  risk.table.y.text.col = T# colour risk table text annotations.
  risk.table.y.text = FALSE # show bars instead of names in text annotations
  # in legend of risk table
)


p=0.078。也离0.05比较接近了,大概数据量太少了吧(尬笑)

4.网页工具分析TCGA BRCA中PTP4A3基因的生存分析






写在后面

TCGA数据库肯定不仅仅是生存分析那么简单啦,同样的

我写了部分常见的TCGA数据库用法