Closed ixxmu closed 1 year ago
Author: YuYuFiSH
Created time: August 3, 2022 7:55 PM
🍥文章:
Single-cell multiomics analysis reveals regulatory programs in clear cell renal cell carcinoma
Cell DIscovery IF=30.96 Q1
🍥代码:
GitHub - Dragonlongzhilin/RenalTumor: Single-cell multi-omics analysis reveals regulatory programs in clear cell renal cell carcinoma
🍥数据集:
PRJNA768891
scRNA-seq数据集中鉴定了15种细胞类型
Tumor:CA9,NDUFA4L2
可以看到主要是5个淋巴系免疫亚群:
以及5个髓系细胞
和之前研究一样,VCAM1− endothelial cells highly expressed genes regulating endothelial cell proliferation and vasculature development内皮细胞增值和血管发育, whereas the VCAM1+ endothelial cells highly expressed genes regulating immune cell chemotaxis and migration 免疫细胞的趋化和迁移
Comparing the annotation results between these two annotation strategies, we found that most cell types were present in both datasets, which supported that scATAC-seq is comparable to scRNA-seq in the detection and annotation of cell types (Supplementary Fig. S1i)
使用Jaccard index 比较两种策略得到的细胞类型,仔细看到映射这种方法多得到一个树突细胞 Dendritic cell
补充:Jaccard 系数,又叫Jaccard相似性系数,用来比较样本集中的相似性和分散性的一个概率。Jaccard系数等于样本集交集与样本集合集的比值,即J=|A∩B|/|A∪B|。例如可以计算同批样本两种不同技术SMART-seq2和10x数据得到的cluster相似性。不过看Jaccard index,两种策略注释细胞的匹配度也太好了吧?
结合上面两种策略, scATAC-seq 注释得到12种细胞类型
肿瘤细胞特异marker CA9 的染色体可及性以及CNVs分析 (chromosome 3p loss or chromosome 5q gain)均证明细胞分型的准确性
f:Normalized chromatin accessibility profiles for each cell type at canonical marker genes. The promoter region is highlighted in gray with the gene model and chromosome position shown below
富集分析,主要探索肿瘤细胞上调DARs的功能
Gene ontology term enrichment analysis for distal(intergenic region) and proximal (promoter and gene body) upregulated DARs in tumor cells.
Gene set enrichment analysis (GSEA) for significantly upregulated genes (log2 (FC) ≥ 0.25 and adjusted P < 0.05) in tumor cells
TF基序活性(chromVAR,bias-corrected deviation scores):进一步支持鉴定出的细胞类型
为了揭示参与肿瘤发生和发展的关键转录因子,我们设计了一种过滤策略来识别富含肿瘤细胞的高度特异性转录因子 (tumor-specific TFs)
再次挑选重点的TF(HOXC5,VENTX,ISL1和OTP)
挑选条件:
we selected four TFs (HOXC5, VENTX, ISL1, and OTP) whose expression levels were significantly associated with worse overall survival in the TCGA-KIRC dataset, and binding sites were located in accessible chromatin regions, which were specific for kidney cancer and identified by ATAC-seq (Fig. 3a and Supplementary Fig. S3a).
TF调控网络:
We identified their target genes whose promoters or linked candidate cis-regulatory elements (cCREs) 顺势调控模块were accessible and contained the TF binding motif in tumor cells.
接下来,探索
(与上面t细胞分析类似思路)
肿瘤相关巨噬细胞 (TAM) 是肿瘤中骨髓细胞的主要群体,在肿瘤发生和耐药性中起着至关重要的作用。分别在scRNA-seq和scATAC-seq数据对其进行降维聚类
在scRNA数据中检查不同分群一些特定的MHC分子,富集分数,免疫检查点基因和共刺激分子的表达
但同样的通路,在scATAC数据中分析,也许数据的稀疏性呈现不同的趋势
随后,分析得到显著差异的TF,其中四个TF在两种数据中呈现一样的趋势
Four TFs (MEF2C, NFKB1, RUNX3, and ENO1) showed a substantial increase in both gene expression and activity in the corresponding clusters
接下来,作者把分析落脚点放在MEF2C,以往的研究表明,MEF2C 在促进 M1 巨噬细胞极化和诱导巨噬细胞死亡方面起着至关重要的作用
We identified MEF2C target genes using the same strategy described in the previous section and found that this gene regulated multiple TFs (e.g., FOXO1, NEU1, and NRP1) and chemokines (e.g., CCL3 and CCL3L1) (Fig. 6j) that have been demonstrated to be associated with phagocytosis and angiogenesis in macrophages
target gene——TF网络
生存分析
https://mp.weixin.qq.com/s/KyqJfWW7MDoFHT70mXLpeA