Closed j-faria closed 6 years ago
Maybe @jdavidrcamacho can do this?
Sure, it's gonna be useful to me later on :D
Check Gedi's read me file and tell me if something similar to that would be useful in kima
Exactly, that would be great! Add it to the wiki when you can and then we iterate
In the part of the analysis of results before I continue we need to decide what graphics are shown when we type 1,2,3,... some don't work
With the latest version, 1 ... 5 should all work
Then there is also hist_offset()
, plot_random_planets()
and corner_planet_parameters()
Ok I'll check it :D
Well number 4 keeps not working for me xD
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
/home/joaocamacho/GitHub/kima/scripts/showresults.py in <module>()
16 if posterior.shape[0] > 5:
17 from display import DisplayResults
---> 18 res = DisplayResults(options)
19 else:
20 print 'Too few samples, keep running the model'
/home/joaocamacho/GitHub/kima/scripts/display.py in __init__(self, options, data_file, fiber_offset, hyperpriors, posterior_samples_file)
259 self.make_plot3()
260 if '4' in options:
--> 261 self.make_plot4()
262 if '5' in options:
263 self.make_plot5()
/home/joaocamacho/GitHub/kima/scripts/display.py in make_plot4(self)
611 available_etas = [v for v in dir(self) if v.startswith('eta')]
612
--> 613 fig, axes = plt.subplots(2, len(available_etas)/2.)
614 for i, eta in enumerate(available_etas):
615 ax = axes[i]
/home/joaocamacho/anaconda2/lib/python2.7/site-packages/matplotlib/pyplot.pyc in subplots(nrows, ncols, sharex, sharey, squeeze, subplot_kw, gridspec_kw, **fig_kw)
1180 axs = fig.subplots(nrows=nrows, ncols=ncols, sharex=sharex, sharey=sharey,
1181 squeeze=squeeze, subplot_kw=subplot_kw,
-> 1182 gridspec_kw=gridspec_kw)
1183 return fig, axs
1184
/home/joaocamacho/anaconda2/lib/python2.7/site-packages/matplotlib/figure.pyc in subplots(self, nrows, ncols, sharex, sharey, squeeze, subplot_kw, gridspec_kw)
1170
1171 # Create array to hold all axes.
-> 1172 axarr = np.empty((nrows, ncols), dtype=object)
1173 for row in range(nrows):
1174 for col in range(ncols):
TypeError: 'float' object cannot be interpreted as an index
I wonder if the problem might be mine, maybe there something I don't have installed.
Should be fixed
Yes it is :+1:
I think we can close this
Write some examples in the wiki on how to start using kima.