Nonlinear blending model considering a various elasto-viscoplastic property
Use of a laboratory device (rheometer) to measure the flowing properties
Finding that an elastic Herschel-Bulkley model is plausible to represent the mixtures of fluid-like foods
Abstract
The materials around us usually exist as mixtures of constituents, each constituent with possibly a different elasto-viscoplastic property. How can we describe the material property of such a mixture is the core question of this paper. We propose a nonlinear blending model that can capture intriguing flowing behaviors that can differ from that of the individual constituents (Fig. 1). We used a laboratory device, rheometer, to measure the flowing properties of various fluid-like foods, and found that an elastic Herschel-Bulkley model has nice agreements with the measured data even for the mixtures of these foods. We then constructed a blending model such that it qualitatively agrees with the measurements and is closed in the parameter space of the elastic Herschel-Bulkley model. We provide validations through comparisons between the measured and estimated properties using our model, and comparisons between simulated examples and captured footages. We show the utility of our model for producing interesting behaviors of various mixtures.
Author
KENTARO NAGASAWA∗, The University of Tokyo
TAKAYUKI SUZUKI, The University of Tokyo
RYOHEI SETO, Kyoto University
MASATO OKADA, The University of Tokyo
YONGHAO YUE∗, The University of Tokyo, Aoyama Gakuin University
Summary
Abstract
The materials around us usually exist as mixtures of constituents, each constituent with possibly a different elasto-viscoplastic property. How can we describe the material property of such a mixture is the core question of this paper. We propose a nonlinear blending model that can capture intriguing flowing behaviors that can differ from that of the individual constituents (Fig. 1). We used a laboratory device, rheometer, to measure the flowing properties of various fluid-like foods, and found that an elastic Herschel-Bulkley model has nice agreements with the measured data even for the mixtures of these foods. We then constructed a blending model such that it qualitatively agrees with the measurements and is closed in the parameter space of the elastic Herschel-Bulkley model. We provide validations through comparisons between the measured and estimated properties using our model, and comparisons between simulated examples and captured footages. We show the utility of our model for producing interesting behaviors of various mixtures.
Author
∗ Authors contributed equally.
Journal/Conference
SIGGRAPH 2019
Link