Open AsiaHenzel opened 4 years ago
I've run your example code:
iris.task = makeClassifTask(data = iris, target = "Species") ctrl = makeMBOControl() ctrl = setMBOControlTermination(ctrl, iters = 1L) #Speed up Tuning by only doing 1 iteration res = autoxgboost(iris.task, control = ctrl, tune.threshold = FALSE)
When printing results I get:
> res
Autoxgboost tuning result Recommended parameters: eta: 0.193 gamma: 6.423 max_depth: 8 colsample_bytree: 0.831 colsample_bylevel: 0.800 lambda: 21.812 alpha: 0.007 subsample: 0.639 nrounds: 1 Preprocessing pipeline: dropconst(rel.tol = 1e-08, abs.tol = 1e-08, ignore.na = FALSE) With tuning result: mmce = 0.000
but when I go inside a named list of proposed optimal parameters I get different values:
> res$optim.result$x
$eta [1] 0.19314 $gamma [1] 2.683274 $max_depth [1] 8 $colsample_bytree [1] 0.8307879 $colsample_bylevel [1] 0.7996119 $lambda [1] 4.447074 $alpha [1] -7.151554 $subsample [1] 0.6385641
For example gamma value are different in both listings.
gamma
Which set of parameters is a correct list of optimal parameters?
I've run your example code:
When printing results I get:
but when I go inside a named list of proposed optimal parameters I get different values:
For example
gamma
value are different in both listings.Which set of parameters is a correct list of optimal parameters?