Open andreaschandra opened 4 years ago
Prepare Social Politics Word Dictionary (SPWD)
Propose Feature Set :
Feature Engineering :
@rubentea16 kalo beragam teknik tapi scorenya masih jelek, mungkin labelingnya kurang konsisten atau kurang banyak
Baseline model result @rubentea16
BernouliNB
accuracy: 0.78 | precision: 0.60 | recall: 0.21 | f score: 0.32
Linear SVM
accuracy: 0.85 | precision: 0.74 | recall: 0.57 | f score: 0.64
Random Forest
accuracy: 0.82 | precision: 0.74 | recall: 0.43 | f score: 0.54
Gradient Boosting
accuracy: 0.84 | precision: 0.73 | recall: 0.55 | f score: 0.63
AdaBoost
accuracy: 0.81 | precision: 0.63 | recall: 0.58 | f score: 0.60
Baseline model result @rubentea16
BernouliNB accuracy: 0.78 | precision: 0.60 | recall: 0.21 | f score: 0.32 Linear SVM accuracy: 0.85 | precision: 0.74 | recall: 0.57 | f score: 0.64 Random Forest accuracy: 0.82 | precision: 0.74 | recall: 0.43 | f score: 0.54 Gradient Boosting accuracy: 0.84 | precision: 0.73 | recall: 0.55 | f score: 0.63 AdaBoost accuracy: 0.81 | precision: 0.63 | recall: 0.58 | f score: 0.60
ini pake feature apa aja?
@rubentea16 tweets aja, cek ini https://github.com/jakartaresearch/adi-buzzer/blob/dev/notebook/40_buzzer_classifier.ipynb
Notes :
Model | Desc | Features | Word Embedding | Accuracy | Precision | Recall | F1-score |
---|---|---|---|---|---|---|---|
RFC | - | multiple-feat | TF-IDF | 0.84 | 0.75 | 0.33 | 0.45 |
RFC | - | single-feat | TF-IDF | 0.84 | 0.72 | 0.35 | 0.47 |
SMOTE+RFC | Oversampling train data (Minor class) | multiple-feat | TF-IDF (desc = 3K dim & tweet = 50K dim) | 0.86 | 0.66 | 0.62 | 0.64 |
SMOTE+RFC | Oversampling train data (Minor class) | single-feat | BPE (tweet = 300 dim) | 0.86 | 0.68 | 0.57 | 0.62 |
SMOTE+SVC(default) | Oversampling train data (Minor class) | single-feat | BPE (tweet = 300 dim) | 0.84 | 0.59 | 0.73 | 0.65 |
SMOTE+XGBoost(default) | Oversampling train data (Minor class) | single-feat | BPE (tweet = 300 dim) | 0.86 | 0.66 | 0.62 | 0.64 |
0.64
interesting
Result after QA label
Algo | acc | pre | rec | fsc |
---|---|---|---|---|
Bernouli NB | accuracy: 0.78 | precision: 0.75 | recall: 0.21 | f score: 0.33 |
SVM | accuracy: 0.85 | precision: 0.75 | recall: 0.60 | f score: 0.67 |
Random Forest | accuracy: 0.81 | precision: 0.77 | recall: 0.34 | f score: 0.47 |
Gradient Boosting | accuracy: 0.84 | precision: 0.78 | recall: 0.53 | f score: 0.63 |
AdaBoost | accuracy: 0.82 | precision: 0.67 | recall: 0.56 | f score: 0.61 |
Algo | acc | pre | rec | fsc |
---|---|---|---|---|
Bernouli NB | accuracy: 0.82 | precision: 0.54 | recall: 0.69 | f score: 0.61 |
SVM | accuracy: 0.87 | precision: 0.69 | recall: 0.65 | f score: 0.67 |
RF | accuracy: 0.85 | precision: 0.74 | recall: 0.43 | f score: 0.54 |
Gradient Boosting | accuracy: 0.87 | precision: 0.72 | recall: 0.54 | f score: 0.62 |
AdaBoost | accuracy: 0.84 | precision: 0.60 | recall: 0.56 | f score: 0.58 |
a given topic or hashtag, we want to see if the population of tweets more likely to flood by buzzer or user organic
or
given a buzzer account, we want to see the major topics to buzzing about
This task includes
feature engineering (need to do text cleansing, preprocessing)
baseline model
early fine-tuning
evaluation
[x] define feature set