Open jaskiratsingh2000 opened 3 years ago
Accuracy Performance (mAP) computed on Ubuntu Machine:
mAP value = 0.564
Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|██████████████| 157/157 [1:49:30<00:00, 41.85s/it]
all 5000 36335 0.668 0.518 0.564 0.363
Speed: 4.0ms pre-process, 1273.3ms inference, 21.3ms NMS per image at shape (32, 3, 640, 640)
Accuracy Performance (mAP) computed on Raspberry Pi 4:
mAP value = 0.000127
val: Scanning '../datasets/coco/val2017' images and labels...4952 found, 48
val: New cache created: ../datasets/coco/val2017.cache
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@. Class Images Labels P R mAP@. Class Images Labels P R mAP@. Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5WARNING: NMS time limit 10.0s exceeded
Class Images Labels P R mAP@.5
all 5000 36335 0.00163 0.00058 0.000127 6.94e-05
Speed: 6.2ms pre-process, 2178.0ms inference, 248.3ms NMS per image at shape (32, 3, 640, 640)
Evaluating pycocotools mAP... saving runs/val/exp6/best_predictions.json...
loading annotations into memory...
Done (t=1.73s)
creating index...
index created!
Loading and preparing results...
DONE (t=20.32s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=125.62s).
Accumulating evaluation results...
DONE (t=55.08s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001
val: data=./data/coco.yaml, weights=['runs/train/exp/weights/best.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=False
YOLOv5 🚀 v5.0-290-g62409ee torch 1.7.0a0+e85d494 CPU
Fusing layers...
Model Summary: 224 layers, 7266973 parameters, 0 gradients, 17.0 GFLOPs
val: Scanning '../datasets/coco/val2017.cache' images and labels... 4952 fo
Class Images Labels P R mAP@.5
Class Images Labels P R mAP@.5
all 5000 36335 0.053 0.00138 0.000123 4.76e-05
Speed: 7.2ms pre-process, 1578.8ms inference, 502.9ms NMS per image at shape (32, 3, 640, 640)
Evaluating pycocotools mAP... saving runs/val/exp8/best_predictions.json...
loading annotations into memory...
Done (t=1.74s)
creating index...
index created!
Loading and preparing results...
DONE (t=32.39s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=330.25s).
Accumulating evaluation results...
DONE (t=90.23s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001
Results saved to runs/val/exp8
python3 val.py --data coco128.yaml --weights runs/train/exp8/weights/best.pt val: data=./data/coco128.yaml, weights=['runs/train/exp8/weights/best.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=False, project=runs/val, name=exp, exist_ok=False, half=False YOLOv5 🚀 v5.0-371-gf3e3f76 torch 1.7.0a0+e85d494 CPU
Fusing layers... Model Summary: 224 layers, 7266973 parameters, 0 gradients, 17.0 GFLOPs val: Scanning '../datasets/coco128/labels/train2017.cache' images and label Class Images Labels P R mAP@.5 all 128 929 6.97e-05 0.00586 1.83e-05 3.01e-06 Speed: 10.3ms pre-process, 1925.2ms inference, 57.0ms NMS per image at shape (32, 3, 640, 640) Results saved to runs/val/exp
Server
Accuracy Performance (mAP) computed on Server:
mAP value = 0.564