Open joejep opened 11 months ago
( camera_optimizer=CameraOptimizerConfig(
CameraOptimizerConfig has been moved from the DataManager to the Model.
/home/eiyike/NERF_BRIDGE_WRKSPACE/nerf_bridge/nsros/method_configs.py:36: FutureWarning: above message coming from datamanager=ROSDataManagerConfig(
/root/miniconda3/envs/nerfstudio/lib/python3.8/site-packages/tyro/_calling.py:242: FutureWarning: above message coming from return unwrapped_f(*positional_args, **kwargs), consumed_keywords # type: ignore [04:23:25] Using --data alias for --data.pipeline.datamanager.dataparser.data ros_train.py:56 ──────────────────────────────────────────────────────── Config ──────────────────────────────────────────────────────── ROSTrainerConfig( _target=<class 'nsros.ros_trainer.ROSTrainer'>, output_dir=PosixPath('outputs'), method_name='ros_nerfacto', experiment_name=None, project_name='nerfstudio-project', timestamp='2023-11-23_042325', machine=MachineConfig(seed=42, num_devices=1, num_machines=1, machine_rank=0, dist_url='auto', device_type='cuda'), logging=LoggingConfig( relative_log_dir=PosixPath('.'), steps_per_log=10, max_buffer_size=20, local_writer=LocalWriterConfig( _target=<class 'nerfstudio.utils.writer.LocalWriter'>, enable=True, stats_to_track=( <EventName.ITER_TRAIN_TIME: 'Train Iter (time)'>, <EventName.TRAIN_RAYS_PER_SEC: 'Train Rays / Sec'>, <EventName.CURR_TEST_PSNR: 'Test PSNR'>, <EventName.VIS_RAYS_PER_SEC: 'Vis Rays / Sec'>, <EventName.TEST_RAYS_PER_SEC: 'Test Rays / Sec'>, <EventName.ETA: 'ETA (time)'> ), max_log_size=10 ), profiler='basic' ), viewer=ViewerConfig( relative_log_filename='viewer_log_filename.txt', websocket_port=None, websocket_port_default=7007, websocket_host='0.0.0.0', num_rays_per_chunk=20000, max_num_display_images=512, quit_on_train_completion=False, image_format='jpeg', jpeg_quality=90, make_share_url=False, camera_frustum_scale=0.1, default_composite_depth=True ), pipeline=VanillaPipelineConfig( _target=<class 'nerfstudio.pipelines.base_pipeline.VanillaPipeline'>, datamanager=ROSDataManagerConfig( _target=<class 'nsros.ros_datamanager.ROSDataManager'>, data=None, masks_on_gpu=False, images_on_gpu=False, dataparser=ROSDataParserConfig( _target=<class 'nsros.ros_dataparser.ROSDataParser'>, data=PosixPath('/home/eiyike/NERF_BRIDGE_WRKSPACE/nerf_bridge/nsros_config_sample.json'), scale_factor=1.0, aabb_scale=0.8 ), train_num_rays_per_batch=4096, train_num_images_to_sample_from=-1, train_num_times_to_repeat_images=-1, eval_num_rays_per_batch=4096, eval_num_images_to_sample_from=-1, eval_num_times_to_repeat_images=-1, eval_image_indices=(0,), collate_fn=<function nerfstudio_collate at 0x7f814dae9310>, camera_res_scale_factor=1.0, patch_size=1, camera_optimizer=CameraOptimizerConfig( _target=<class 'nerfstudio.cameras.camera_optimizers.CameraOptimizer'>, mode='SO3xR3', trans_l2_penalty=0.01, rot_l2_penalty=0.001, optimizer=AdamOptimizerConfig( _target=<class 'torch.optim.adam.Adam'>, lr=0.0006, eps=1e-08, max_norm=None, weight_decay=0.01 ), scheduler=None ), pixel_sampler=PixelSamplerConfig( _target=<class 'nerfstudio.data.pixel_samplers.PixelSampler'>, num_rays_per_batch=4096, keep_full_image=False, is_equirectangular=False ), publish_training_posearray=True, data_update_freq=1.0, num_training_images=500 ), model=NerfactoModelConfig( _target=<class 'nerfstudio.models.nerfacto.NerfactoModel'>, enable_collider=True, collider_params={'near_plane': 2.0, 'far_plane': 6.0}, loss_coefficients={'rgb_loss_coarse': 1.0, 'rgb_loss_fine': 1.0}, eval_num_rays_per_chunk=32768, prompt=None, near_plane=0.05, far_plane=1000.0, background_color='last_sample', hidden_dim=64, hidden_dim_color=64, hidden_dim_transient=64, num_levels=16, base_res=16, max_res=2048, log2_hashmap_size=19, features_per_level=2, num_proposal_samples_per_ray=(256, 96), num_nerf_samples_per_ray=48, proposal_update_every=5, proposal_warmup=5000, num_proposal_iterations=2, use_same_proposal_network=False, proposal_net_args_list=[ {'hidden_dim': 16, 'log2_hashmap_size': 17, 'num_levels': 5, 'max_res': 128, 'use_linear': False}, {'hidden_dim': 16, 'log2_hashmap_size': 17, 'num_levels': 5, 'max_res': 256, 'use_linear': False} ], proposal_initial_sampler='piecewise', interlevel_loss_mult=1.0, distortion_loss_mult=0.002, orientation_loss_mult=0.0001, pred_normal_loss_mult=0.001, use_proposal_weight_anneal=True, use_average_appearance_embedding=True, proposal_weights_anneal_slope=10.0, proposal_weights_anneal_max_num_iters=1000, use_single_jitter=True, predict_normals=False, disable_scene_contraction=False, use_gradient_scaling=False, implementation='tcnn', appearance_embed_dim=32, camera_optimizer=CameraOptimizerConfig( _target=<class 'nerfstudio.cameras.camera_optimizers.CameraOptimizer'>, mode='SO3xR3', trans_l2_penalty=0.01, rot_l2_penalty=0.001, optimizer=None, scheduler=None ) ) ), optimizers={ 'proposal_networks': { 'optimizer': AdamOptimizerConfig( _target=<class 'torch.optim.adam.Adam'>, lr=0.01, eps=1e-15, max_norm=None, weight_decay=0 ), 'scheduler': None }, 'fields': { 'optimizer': AdamOptimizerConfig( _target=<class 'torch.optim.adam.Adam'>, lr=0.01, eps=1e-15, max_norm=None, weight_decay=0 ), 'scheduler': None } },
Are you on the latest version of the main branch?
Yea
I am on the main branch
7 months ago.
ModuleNotFoundError: No module named ‘nerfstudio.configs’
( camera_optimizer=CameraOptimizerConfig(
CameraOptimizerConfig has been moved from the DataManager to the Model.
/home/eiyike/NERF_BRIDGE_WRKSPACE/nerf_bridge/nsros/method_configs.py:36: FutureWarning: above message coming from datamanager=ROSDataManagerConfig(
CameraOptimizerConfig has been moved from the DataManager to the Model.
/root/miniconda3/envs/nerfstudio/lib/python3.8/site-packages/tyro/_calling.py:242: FutureWarning: above message coming from return unwrapped_f(*positional_args, **kwargs), consumed_keywords # type: ignore [04:23:25] Using --data alias for --data.pipeline.datamanager.dataparser.data ros_train.py:56 ──────────────────────────────────────────────────────── Config ──────────────────────────────────────────────────────── ROSTrainerConfig( _target=<class 'nsros.ros_trainer.ROSTrainer'>, output_dir=PosixPath('outputs'), method_name='ros_nerfacto', experiment_name=None, project_name='nerfstudio-project', timestamp='2023-11-23_042325', machine=MachineConfig(seed=42, num_devices=1, num_machines=1, machine_rank=0, dist_url='auto', device_type='cuda'), logging=LoggingConfig( relative_log_dir=PosixPath('.'), steps_per_log=10, max_buffer_size=20, local_writer=LocalWriterConfig( _target=<class 'nerfstudio.utils.writer.LocalWriter'>, enable=True, stats_to_track=( <EventName.ITER_TRAIN_TIME: 'Train Iter (time)'>, <EventName.TRAIN_RAYS_PER_SEC: 'Train Rays / Sec'>, <EventName.CURR_TEST_PSNR: 'Test PSNR'>, <EventName.VIS_RAYS_PER_SEC: 'Vis Rays / Sec'>, <EventName.TEST_RAYS_PER_SEC: 'Test Rays / Sec'>, <EventName.ETA: 'ETA (time)'> ), max_log_size=10 ), profiler='basic' ), viewer=ViewerConfig( relative_log_filename='viewer_log_filename.txt', websocket_port=None, websocket_port_default=7007, websocket_host='0.0.0.0', num_rays_per_chunk=20000, max_num_display_images=512, quit_on_train_completion=False, image_format='jpeg', jpeg_quality=90, make_share_url=False, camera_frustum_scale=0.1, default_composite_depth=True ), pipeline=VanillaPipelineConfig( _target=<class 'nerfstudio.pipelines.base_pipeline.VanillaPipeline'>, datamanager=ROSDataManagerConfig( _target=<class 'nsros.ros_datamanager.ROSDataManager'>, data=None, masks_on_gpu=False, images_on_gpu=False, dataparser=ROSDataParserConfig( _target=<class 'nsros.ros_dataparser.ROSDataParser'>, data=PosixPath('/home/eiyike/NERF_BRIDGE_WRKSPACE/nerf_bridge/nsros_config_sample.json'), scale_factor=1.0, aabb_scale=0.8 ), train_num_rays_per_batch=4096, train_num_images_to_sample_from=-1, train_num_times_to_repeat_images=-1, eval_num_rays_per_batch=4096, eval_num_images_to_sample_from=-1, eval_num_times_to_repeat_images=-1, eval_image_indices=(0,), collate_fn=<function nerfstudio_collate at 0x7f814dae9310>, camera_res_scale_factor=1.0, patch_size=1, camera_optimizer=CameraOptimizerConfig( _target=<class 'nerfstudio.cameras.camera_optimizers.CameraOptimizer'>, mode='SO3xR3', trans_l2_penalty=0.01, rot_l2_penalty=0.001, optimizer=AdamOptimizerConfig( _target=<class 'torch.optim.adam.Adam'>, lr=0.0006, eps=1e-08, max_norm=None, weight_decay=0.01 ), scheduler=None ), pixel_sampler=PixelSamplerConfig( _target=<class 'nerfstudio.data.pixel_samplers.PixelSampler'>, num_rays_per_batch=4096, keep_full_image=False, is_equirectangular=False ), publish_training_posearray=True, data_update_freq=1.0, num_training_images=500 ), model=NerfactoModelConfig( _target=<class 'nerfstudio.models.nerfacto.NerfactoModel'>, enable_collider=True, collider_params={'near_plane': 2.0, 'far_plane': 6.0}, loss_coefficients={'rgb_loss_coarse': 1.0, 'rgb_loss_fine': 1.0}, eval_num_rays_per_chunk=32768, prompt=None, near_plane=0.05, far_plane=1000.0, background_color='last_sample', hidden_dim=64, hidden_dim_color=64, hidden_dim_transient=64, num_levels=16, base_res=16, max_res=2048, log2_hashmap_size=19, features_per_level=2, num_proposal_samples_per_ray=(256, 96), num_nerf_samples_per_ray=48, proposal_update_every=5, proposal_warmup=5000, num_proposal_iterations=2, use_same_proposal_network=False, proposal_net_args_list=[ {'hidden_dim': 16, 'log2_hashmap_size': 17, 'num_levels': 5, 'max_res': 128, 'use_linear': False}, {'hidden_dim': 16, 'log2_hashmap_size': 17, 'num_levels': 5, 'max_res': 256, 'use_linear': False} ], proposal_initial_sampler='piecewise', interlevel_loss_mult=1.0, distortion_loss_mult=0.002, orientation_loss_mult=0.0001, pred_normal_loss_mult=0.001, use_proposal_weight_anneal=True, use_average_appearance_embedding=True, proposal_weights_anneal_slope=10.0, proposal_weights_anneal_max_num_iters=1000, use_single_jitter=True, predict_normals=False, disable_scene_contraction=False, use_gradient_scaling=False, implementation='tcnn', appearance_embed_dim=32, camera_optimizer=CameraOptimizerConfig( _target=<class 'nerfstudio.cameras.camera_optimizers.CameraOptimizer'>, mode='SO3xR3', trans_l2_penalty=0.01, rot_l2_penalty=0.001, optimizer=None, scheduler=None ) ) ), optimizers={ 'proposal_networks': { 'optimizer': AdamOptimizerConfig( _target=<class 'torch.optim.adam.Adam'>, lr=0.01, eps=1e-15, max_norm=None, weight_decay=0 ), 'scheduler': None }, 'fields': { 'optimizer': AdamOptimizerConfig( _target=<class 'torch.optim.adam.Adam'>, lr=0.01, eps=1e-15, max_norm=None, weight_decay=0 ), 'scheduler': None } },