Open JoanisTriandafilidi opened 1 year ago
@JoanisTriandafilidi Any progress?
class SynthesizerTrn_inf(nn.Module):
"""
Synthesizer for Training
"""
def __init__(self,
n_vocab,
spec_channels,
segment_size,
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
n_speakers=0,
gin_channels=0,
use_sdp=True,
**kwargs):
super().__init__()
self.n_vocab = n_vocab
self.spec_channels = spec_channels
self.inter_channels = inter_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.resblock = resblock
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.n_speakers = n_speakers
self.gin_channels = gin_channels
self.use_sdp = use_sdp
self.enc_p = TextEncoder(n_vocab,
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout)
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
if use_sdp:
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
else:
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
if n_speakers > 1:
self.emb_g = nn.Embedding(n_speakers, gin_channels)
def forward(self, x):
x_lengths = torch.LongTensor([x.size(1)])
sid = None
noise_scale = 1
length_scale = 1
noise_scale_w = 1.
max_len = None
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
if self.n_speakers > 0:
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
else:
g = None
if self.use_sdp:
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
else:
logw = self.dp(x, x_mask, g=g)
w = torch.exp(logw) * x_mask * length_scale
w_ceil = torch.ceil(w)
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
attn = commons.generate_path(w_ceil, attn_mask)
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
z_p = m_p + torch.ones(m_p.size()) * torch.exp(logs_p) * noise_scale
z = self.flow(z_p, y_mask, g=g, reverse=True)
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
return o
size = torch.randint(0, 255, (1,)).item()
tensor = torch.zeros((295), dtype=torch.int32)
x_tst = tensor.unsqueeze(0)
hps = utils.get_hparams_from_file("./configs/ljs_base.json")
net_g = SynthesizerTrn_inf(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model)
_ = utils.load_checkpoint("pretrained_ljs.pth", net_g, None)
# Set random values at the odd indices
for i in range(1, size, 2):
tensor[i] = torch.randint(1, 160, (1,)).item()
net_g.eval()
net_g = torch.jit.trace(net_g, x_tst)
with torch.no_grad():
torch.onnx.export(net_g, x_tst, "/VITS.onnx",
export_params=True,
keep_initializers_as_inputs=True,
opset_version=11,
do_constant_folding=True,
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK,
verbose=True, input_names=["input_0"], output_names=["output_0"], dynamic_axes=dynamic_axes)
This code is tested and working. you can use opset version according to you requirements.
Hello. Can anyone help me with exporting the model to onnx? I looked at a couple of issues on this topic, but they did not give me all the answers. I also tried using one of the pull requests during which I got errors. This is my first experience and I would really appreciate any help.