I have inferenced using the feature extractor and I went to train the sequence model with no pre-trained weights and received the following error:
Epoch 0: 0%| | 0/1000 [00:25<?, ?it/s]
Traceback (most recent call last):
File "C:\Users\mhurl\anaconda3\envs\deg\lib\runpy.py", line 193, in _run_module_as_main
"main", mod_spec)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "c:\users\mhurl\deepethogram\deepethogram\sequence\train.py", line 265, in
sequence_train(cfg)
File "c:\users\mhurl\deepethogram\deepethogram\sequence\train.py", line 75, in sequence_train
trainer.fit(lightning_module)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\trainer\trainer.py", line 510, in fit
results = self.accelerator_backend.train()
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\accelerators\accelerator.py", line 57, in train
return self.train_or_test()
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\accelerators\accelerator.py", line 74, in train_or_test
results = self.trainer.train()
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\trainer\trainer.py", line 561, in train
self.train_loop.run_training_epoch()
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\trainer\training_loop.py", line 550, in run_training_epoch
batch_output = self.run_training_batch(batch, batch_idx, dataloader_idx)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\trainer\training_loop.py", line 718, in run_training_batch
self.optimizer_step(optimizer, opt_idx, batch_idx, train_step_and_backward_closure)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\trainer\training_loop.py", line 493, in optimizer_step
using_lbfgs=is_lbfgs,
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\core\lightning.py", line 1298, in optimizer_step
optimizer.step(closure=optimizer_closure)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\core\optimizer.py", line 286, in step
self.__optimizer_step(*args, closure=closure, profiler_name=profiler_name, kwargs)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\core\optimizer.py", line 144, in __optimizer_step
optimizer.step(closure=closure, *args, *kwargs)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\torch\optim\optimizer.py", line 88, in wrapper
return func(args, kwargs)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\torch\autograd\grad_mode.py", line 28, in decorate_context
return func(*args, kwargs)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\torch\optim\adam.py", line 92, in step
loss = closure()
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\trainer\training_loop.py", line 713, in train_step_and_backward_closure
self.trainer.hiddens
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\trainer\training_loop.py", line 806, in training_step_and_backward
result = self.training_step(split_batch, batch_idx, opt_idx, hiddens)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\trainer\training_loop.py", line 319, in training_step
training_step_output = self.trainer.accelerator_backend.training_step(args)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\accelerators\gpu_accelerator.py", line 70, in training_step
return self._step(self.trainer.model.training_step, args)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\accelerators\gpu_accelerator.py", line 65, in _step
output = model_step(args)
File "c:\users\mhurl\deepethogram\deepethogram\sequence\train.py", line 138, in training_step
return self.common_step(batch, batch_idx, 'train')
File "c:\users\mhurl\deepethogram\deepethogram\sequence\train.py", line 118, in common_step
loss, loss_dict = self.criterion(outputs, batch['labels'], self.model)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl
return forward_call(input, kwargs)
File "c:\users\mhurl\deepethogram\deepethogram\feature_extractor\losses.py", line 207, in forward
data_loss = self.data_criterion(outputs, label)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\torch\nn\modules\loss.py", line 1152, in forward
label_smoothing=self.label_smoothing)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\torch\nn\functional.py", line 2846, in cross_entropy
return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing)
RuntimeError: Expected floating point type for target with class probabilities, got Long
[2022-01-31 12:00:04,278] INFO [deepethogram.gui.main.sequence_train:496] Training finished. If you see error messages above, training did not complete successfully.
[2022-01-31 12:00:04,278] INFO [deepethogram.gui.main.sequence_train:501] ~~~~~~
Hello,
I have inferenced using the feature extractor and I went to train the sequence model with no pre-trained weights and received the following error:
Epoch 0: 0%| | 0/1000 [00:25<?, ?it/s] Traceback (most recent call last): File "C:\Users\mhurl\anaconda3\envs\deg\lib\runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "C:\Users\mhurl\anaconda3\envs\deg\lib\runpy.py", line 85, in _run_code exec(code, run_globals) File "c:\users\mhurl\deepethogram\deepethogram\sequence\train.py", line 265, in
sequence_train(cfg)
File "c:\users\mhurl\deepethogram\deepethogram\sequence\train.py", line 75, in sequence_train
trainer.fit(lightning_module)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\trainer\trainer.py", line 510, in fit
results = self.accelerator_backend.train()
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\accelerators\accelerator.py", line 57, in train
return self.train_or_test()
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\accelerators\accelerator.py", line 74, in train_or_test
results = self.trainer.train()
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\trainer\trainer.py", line 561, in train
self.train_loop.run_training_epoch()
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\trainer\training_loop.py", line 550, in run_training_epoch
batch_output = self.run_training_batch(batch, batch_idx, dataloader_idx)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\trainer\training_loop.py", line 718, in run_training_batch
self.optimizer_step(optimizer, opt_idx, batch_idx, train_step_and_backward_closure)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\trainer\training_loop.py", line 493, in optimizer_step
using_lbfgs=is_lbfgs,
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\core\lightning.py", line 1298, in optimizer_step
optimizer.step(closure=optimizer_closure)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\core\optimizer.py", line 286, in step
self.__optimizer_step(*args, closure=closure, profiler_name=profiler_name, kwargs)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\core\optimizer.py", line 144, in __optimizer_step
optimizer.step(closure=closure, *args, *kwargs)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\torch\optim\optimizer.py", line 88, in wrapper
return func(args, kwargs)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\torch\autograd\grad_mode.py", line 28, in decorate_context
return func(*args, kwargs)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\torch\optim\adam.py", line 92, in step
loss = closure()
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\trainer\training_loop.py", line 713, in train_step_and_backward_closure
self.trainer.hiddens
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\trainer\training_loop.py", line 806, in training_step_and_backward
result = self.training_step(split_batch, batch_idx, opt_idx, hiddens)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\trainer\training_loop.py", line 319, in training_step
training_step_output = self.trainer.accelerator_backend.training_step(args)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\accelerators\gpu_accelerator.py", line 70, in training_step
return self._step(self.trainer.model.training_step, args)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\pytorch_lightning-1.1.8-py3.7.egg\pytorch_lightning\accelerators\gpu_accelerator.py", line 65, in _step
output = model_step(args)
File "c:\users\mhurl\deepethogram\deepethogram\sequence\train.py", line 138, in training_step
return self.common_step(batch, batch_idx, 'train')
File "c:\users\mhurl\deepethogram\deepethogram\sequence\train.py", line 118, in common_step
loss, loss_dict = self.criterion(outputs, batch['labels'], self.model)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl
return forward_call(input, kwargs)
File "c:\users\mhurl\deepethogram\deepethogram\feature_extractor\losses.py", line 207, in forward
data_loss = self.data_criterion(outputs, label)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\torch\nn\modules\loss.py", line 1152, in forward
label_smoothing=self.label_smoothing)
File "C:\Users\mhurl\anaconda3\envs\deg\lib\site-packages\torch\nn\functional.py", line 2846, in cross_entropy
return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing)
RuntimeError: Expected floating point type for target with class probabilities, got Long
[2022-01-31 12:00:04,278] INFO [deepethogram.gui.main.sequence_train:496] Training finished. If you see error messages above, training did not complete successfully.
[2022-01-31 12:00:04,278] INFO [deepethogram.gui.main.sequence_train:501]
~~~~~~Thank you for the help!