Open Airyzf opened 6 years ago
You can try to reduce batch size. It is OOM (out of memory).
You can try to reduce batch size. It is OOM (out of memory). I annotate line 112,114,117 and got this error
Traceback (most recent call last):
File "tftrt_example.py", line 138, in
Cannot reproduce on my site. Did your environment fit requirements ?
Cannot reproduce on my site. Did your environment fit requirements ?
python3.5 May be TensorRT 3.0.4, how to check tensorrt version ? Tensorflow 1.10.0 Keras 2.2.4 Pycuda 2018.1.1
Cannot reproduce on my site. Did your environment fit requirements ?
python3.5 May be TensorRT 3.0.4, how to check tensorrt version ? Tensorflow 1.10.0 Keras 2.2.4 Pycuda 2018.1.1
Checking the TensorRt version: import tensorrt as trt print(trt.__version___)
I got this error.
2018-10-19 17:53:13.158279: W tensorflow/core/common_runtime/bfc_allocator.cc:275] *___****____ 2018-10-19 17:53:13.158377: W tensorflow/core/framework/op_kernel.cc:1273] OP_REQUIRES failed at conv_ops.cc:693 : Resource exhausted: OOM when allocating tensor with shape[10000,64,24,24] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc Traceback (most recent call last): File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1292, in _do_call return fn(*args) File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1277, in _run_fn options, feed_dict, fetch_list, target_list, run_metadata) File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1367, in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[10000,64,24,24] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node import/sequential_1/conv2d_2/convolution}} = Conv2D[T=DT_FLOAT, data_format="NCHW", dilations=[1, 1, 1, 1], padding="VALID", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](import/sequential_1/conv2d_1/Relu, import/conv2d_2/kernel)]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
During handling of the above exception, another exception occurred:
Traceback (most recent call last): File "tftrt_example.py", line 138, in
main()
File "tftrt_example.py", line 118, in main
y_tf = tf_engine.infer(x_test)
File "tftrt_example.py", line 50, in infer
feed_dict={self.x_tensor: x})
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 887, in run
run_metadata_ptr)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1110, in _run
feed_dict_tensor, options, run_metadata)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1286, in _do_run
run_metadata)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1308, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[10000,64,24,24] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[{{node import/sequential_1/conv2d_2/convolution}} = Conv2D[T=DT_FLOAT, data_format="NCHW", dilations=[1, 1, 1, 1], padding="VALID", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](import/sequential_1/conv2d_1/Relu, import/conv2d_2/kernel)]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
Caused by op 'import/sequential_1/conv2d_2/convolution', defined at: File "tftrt_example.py", line 138, in
main()
File "tftrt_example.py", line 116, in main
tf_engine = TfEngine(frozen_graph)
File "tftrt_example.py", line 38, in init
graph_def=graph.frozen, return_elements=graph.x_name + graph.y_name)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/util/deprecation.py", line 488, in new_func
return func(*args, **kwargs)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/importer.py", line 442, in import_graph_def
_ProcessNewOps(graph)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/importer.py", line 234, in _ProcessNewOps
for new_op in graph._add_new_tf_operations(compute_devices=False): # pylint: disable=protected-access
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 3426, in _add_new_tf_operations
for c_op in c_api_util.new_tf_operations(self)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 3426, in
for c_op in c_api_util.new_tf_operations(self)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 3285, in _create_op_from_tf_operation
ret = Operation(c_op, self)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 1748, in init
self._traceback = tf_stack.extract_stack()
ResourceExhaustedError (see above for traceback): OOM when allocating tensor with shape[10000,64,24,24] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[{{node import/sequential_1/conv2d_2/convolution}} = Conv2D[T=DT_FLOAT, data_format="NCHW", dilations=[1, 1, 1, 1], padding="VALID", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](import/sequential_1/conv2d_1/Relu, import/conv2d_2/kernel)]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.